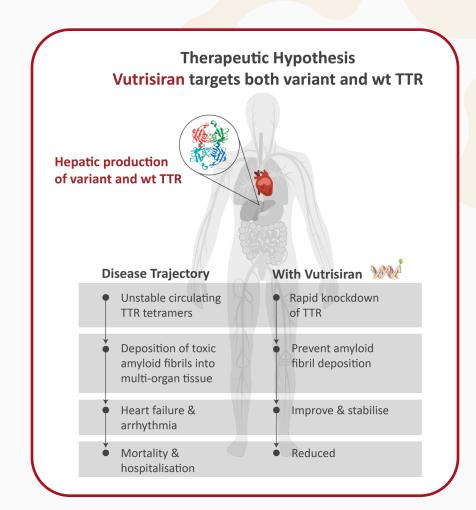


Primary Results from HELIOS-B, a Phase 3 Study of Vutrisiran in Patients with Transthyretin Amyloidosis with Cardiomyopathy

M. Fontana¹, J. L. Berk², J. D. Gillmore¹, R. Witteles³, M. Grogan⁴, B. Drachman⁵, T. Damy⁶, P. Garcia-Pavia⁷, S. D. Solomon⁸, N. Tahara⁹, P. Van der Meer¹⁰, L. Yang¹¹, S. A. Eraly¹¹, K. L. Boyle¹¹, J. Vest¹¹, M. S. Maurer¹²

¹Division of Medicine, University College London, Royal Free Hospital, London, UK; ²Boston University School of Medicine, Boston, MA, USA; ³Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA; ⁴Department of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, MN, USA; ⁵Department of Cardiovascular Medicine, Penn Presbyterian Medical Center, Philadelphia, PA, USA; ⁶Referral Center for Cardiac Amyloidosis, Hôpital Henri Mondor, Créteil, France; ⁷Department of Cardiology, Hospital Universitario Puerta de Hierro Majadahonda, CIBERCV, Madrid, Spain; ⁸Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA; ⁹Division of Cardiovascular Medicine, Department of Medicine, Kurume University School of Medicine, Kurume, Japan; ¹⁰Universitair Medisch Centrum Groningen, University of Groningen, The Netherlands; ¹¹Alnylam Pharmaceuticals, Cambridge, MA, USA; ¹²Columbia University Medical Center, New York, NY, USA

30 August-2 September 2024 | European Society of Cardiology Congress 2024, London, UK

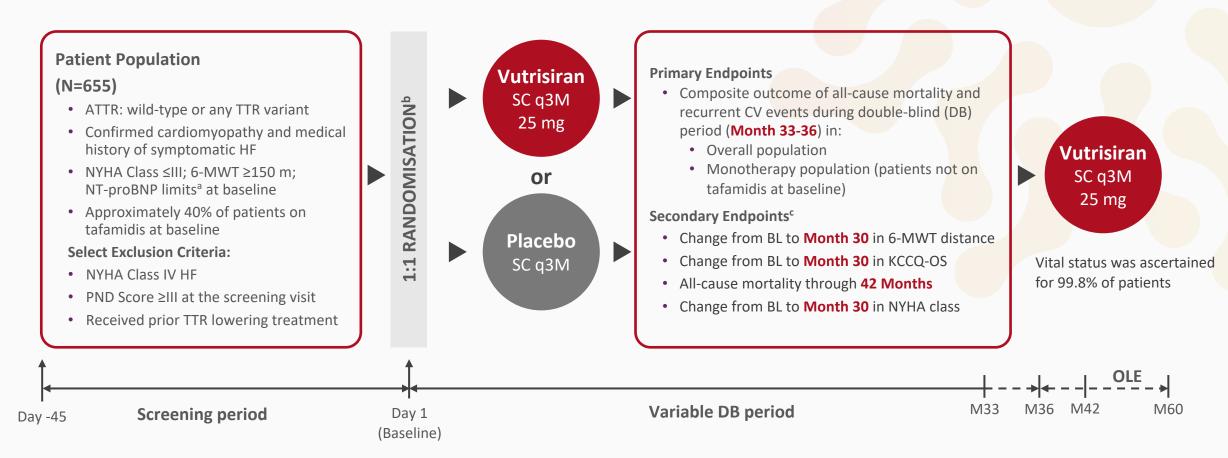

Introduction

ATTR Cardiomyopathy

- Results from accumulation of wild type or variant TTR amyloid fibrils in the heart¹⁻⁵
- Leads to progressive heart failure, arrhythmias, declines in functional status and QOL, increased hospitalisations and reduced survival^{6–10}
- Evolution toward earlier diagnosis and improved HF management; contemporary patients have less advanced disease, and are managed with tafamidis, SGLT2 inhibitors, and diuretics

HELIOS-B study

- Evaluated vutrisiran, a SC-administered RNAi therapeutic (quarterly dosing)
- Objective: Establish efficacy and safety in a contemporary ATTR-CM patient population



HELIOS-B Study Design

A randomised, double-blind outcomes study in ATTR amyloidosis patients with cardiomyopathy

°NT-proBNP levels of >300 pg/mL and <8500 pg/mL (or >600 pg/mL and <8500 pg/mL for patients with atrial fibrillation).

bRandomisation was stratified according to the use of tafamidis at baseline (yes versus no), ATTR disease type (hATTR or wtATTR), and NYHA class and age at baseline (NYHA class I or II and age <75 years versus all others).

cAssessed in the overall population and monotherapy population as separate endpoints.

Abbreviations: 6-MWT, 6-minute walk test; ATTR, transthyretin amyloidosis; BL, baseline; CV, cardiovascular; DB, double-blind; HF, heart failure; NT-proBNP, *N*-terminal prohormone of B-type natriuretic peptide; KCCQ-OS, Kansas City Cardiomyopathy Questionnaire — Overall Summary; NYHA, New York Heart Association; OLE, open label extension; PND, polyneuropathy disability; q3M, every 3 months; SC, subcutaneous; TTR, transthyretin.

References: Clinicaltrials.gov identifier: NCT04153149

Contemporary Population with Baseline Characteristics Balanced Across Arms

OVERALL POPULATION

		Overall Population			
Parameter		Placebo (N=328)	Vutrisiran (N=326)		
Age (years), median (range)		76 (46, 85)	77 (45, 85)		
Male sex, n (%)		306 (93.3)	299 (91.7)		
hATTR amyloidosis, n (%)		39 (11.9)	37 (11.3)		
NYHA class, n (%)	ı	35 (10.7)	49 (15.0)		
	11	258 (78.7)	250 (76.7)		
	III	35 (10.7)	27 (8.3)		
ATTR disease stage, n (%)	1	229 (69.8)	208 (63.8)		
	2	87 (26.5)	100 (30.7)		
	3	12 (3.7)	18 (5.5)		
Baseline 6-MWT, meters, mean (SI)	377 (96)	372 (104)		
Baseline KCCQ-OS, points, mean (S	D)	72.26 (19.92)	72.96 (19.44)		
Baseline NT-proBNP, ng/L, median (IQR)		1801 (1042, 3082)	2021 (1138, 3312)		
Baseline Troponin I, ng/L, median (IQR)		65.2 (41.1, 105.5)	71.9 (44.9, 115.9)		

Substantial use of effective background medications

- Tafamidis
 - Baseline ~40% in both treatment arms
 - Drop-in on monotherapy population during DB period ~21% and ~22% for placebo and vutrisiran, respectively
- SGLT2 inhibitors
 - Baseline ~3% in both treatment arms
 - Drop-in during DB period ~35% and ~31% for placebo and vutrisiran, respectively

Substantial use of diuretics

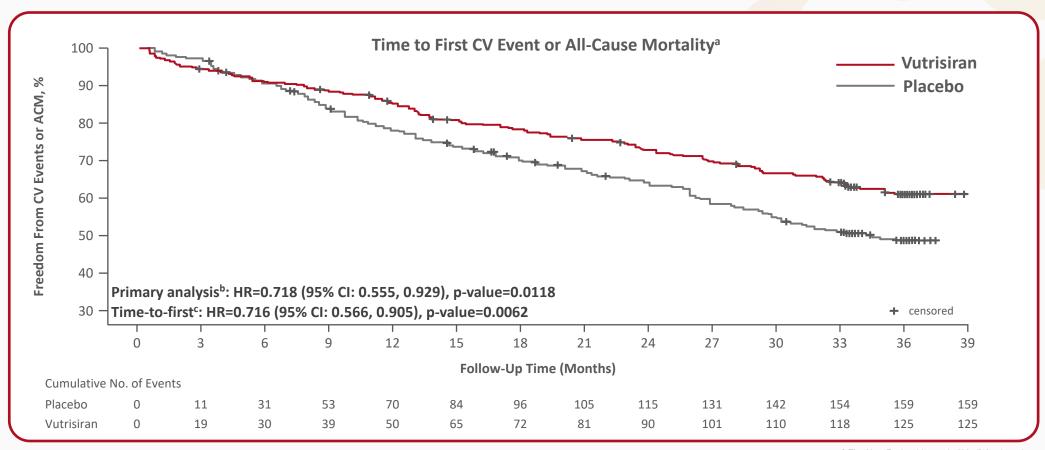
- Baseline ~80% in both treatment arms
- Outpatient initiation or intensification of diuretics after first dose was ~56% and ~48% for placebo and vutrisiran, respectively

Patients were not randomised to baseline tafamidis; patients on baseline tafamidis were generally healthier based on NYHA class, NT-proBNP, 6-MWT, and KCCQ-OS score

HELIOS-B Met All Endpoints in Overall Population and Monotherapy Population

Monotherapy Population
Vutrisiran met all 10 primary and secondary endpoints

Endpoint		Overall population (N=654)		Monotherapy population (N=395)	
Enapoint	Treatment effect estimation	Treatment effect	p-value	Treatment effect	p-value
Primary endpoints: Composite outcome of all-cause mortality and recurrent CV events	Hazard ratio	0.718	0.0118	0.672	0.0162
Secondary endpoints					
6-MWT change at Month 30	LS Mean difference	26.46	0.00008	32.09	0.0005
KCCQ-OS change at Month 30	LS Mean difference	5.80	0.0008	8.69	0.0003
All-cause mortality through Month 42	Hazard ratio	0.645	0.0098	0.655	0.0454
NYHA class: % stable or improved at Month 30	Adjusted % difference	8.7%	0.0217	12.5%	0.0121



Primary Endpoint: Statistically Significant Reduction in the Composite of All-Cause Mortality and Recurrent CV Events

HELIOS-B

OVERALL POPULATION

Achieved 28% reduction in the overall population

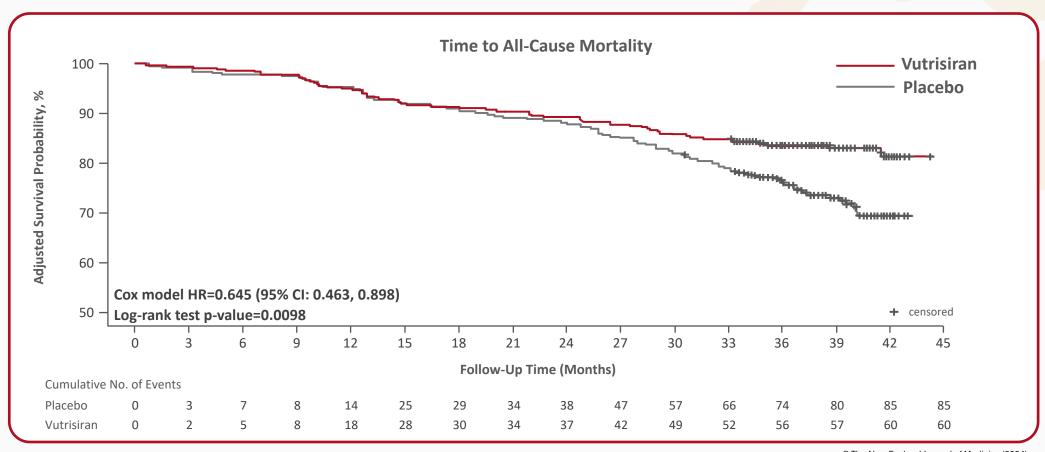
© The New England Journal of Medicine (2024)

Results consistent across multiple sensitivity analyses, including win ratio

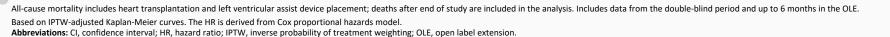
Nominally Significant Effect on Both Components of Composite Outcome During Double-Blind Period (Month 33-36)

Similar effect on all-cause mortality and recurrent CV events components of the primary endpoint

	Overall population (N = 654)		
Primary endpoint: all-cause mortality and recurrent CV events (LWYY)			
HR (95% CI)	0.718 (0.555, 0.929)		
p-value	0.0118		
Components			
All-cause mortality (DB period)			
HR (95% CI) ^a	0.694 (0.490, 0.982)		
Log-rank p-value	0.0389		
Recurrent CV events (Poisson regression)			
Relative rate ratio (95% CI)	0.733 (0.610, 0.882)		
p-value	0.0010		

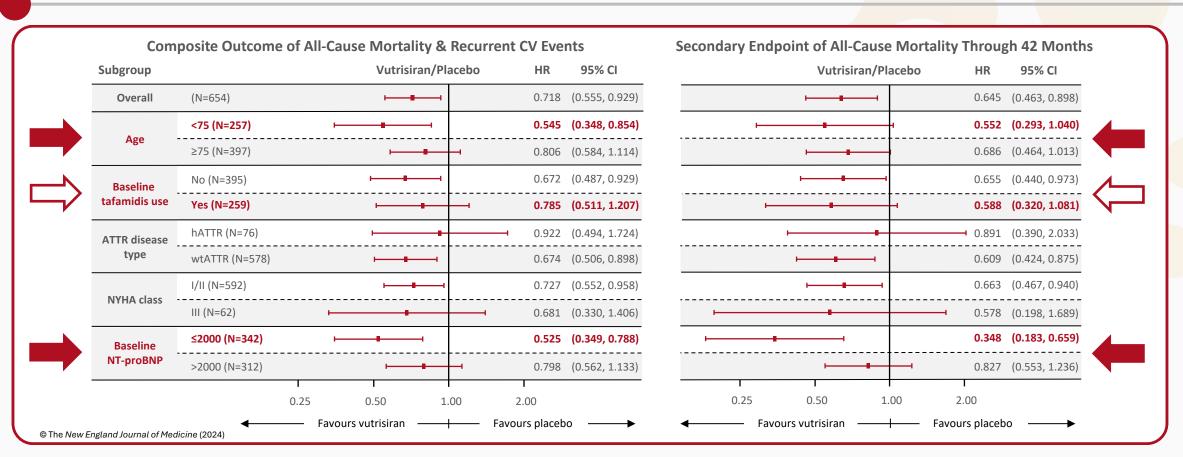


Secondary Endpoint: Statistically Significant Reduction in All-Cause Mortality Through 42 Months



OVERALL POPULATION

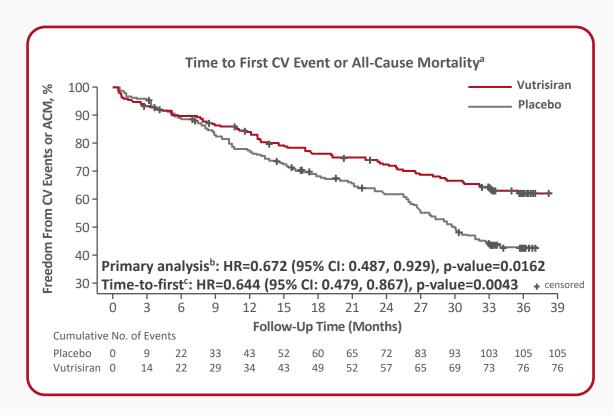
Achieved 36% reduction in the overall population

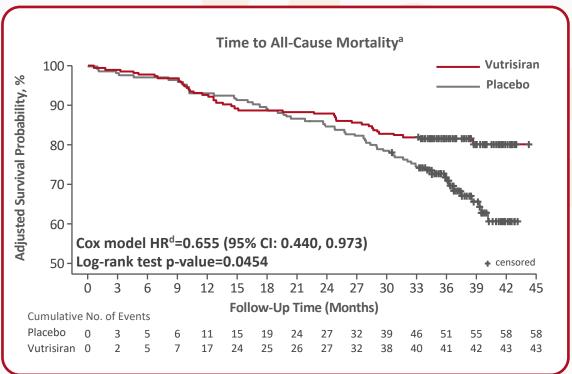


Consistent Benefits across All Prespecified Subgroups

OVERALL POPULATION

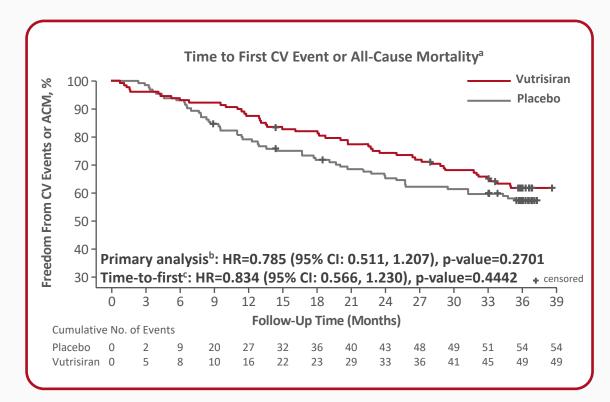
- Greater benefits seen in patients with earlier disease (i.e., age <75 years and NT-proBNP ≤2000 ng/L), with 46% and 48% reduction, respectively, in primary composite endpoint, and 45% and 65% reduction, respectively, in all-cause mortality
- Consistent benefit in patients with or without baseline tafamidis

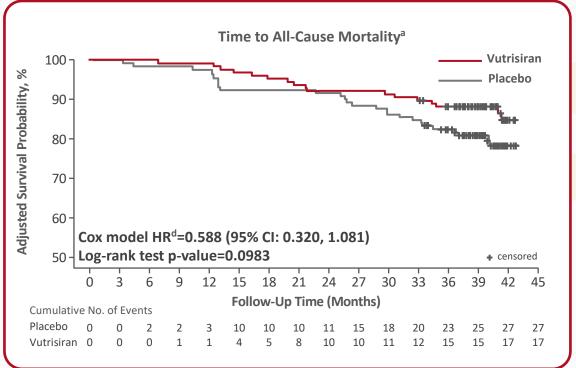



Statistically Significant Outcomes Benefit with Vutrisiran Monotherapy

33% reduction in the primary composite endpoint and 35% reduction in all-cause mortality

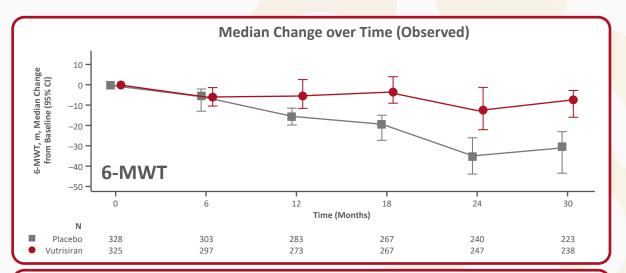
MONOTHERAPY POPULATION

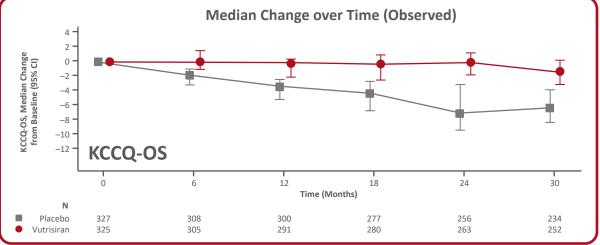




Evidence of Added Benefit on Top of Tafamidis

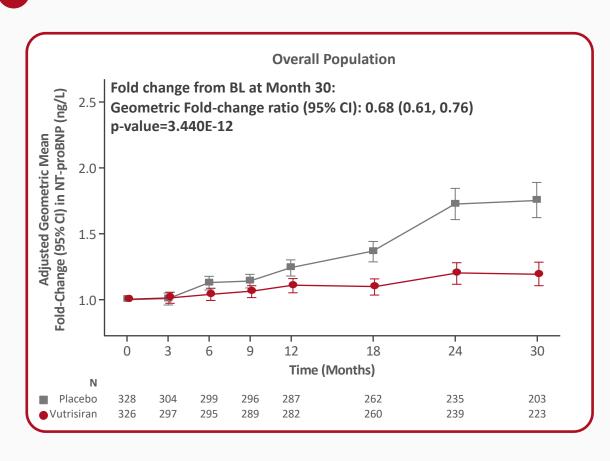
Favourable trends in baseline tafamidis subgroup on both primary composite (22% reduction) and all-cause mortality (41% reduction)

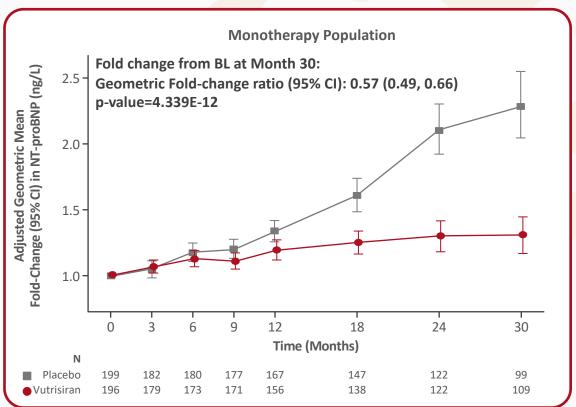

Favourable Impact on Multiple Measures of Disease Progression



Maintains functional capacity, health status, and quality of life; statistically significant impact relative to placebo

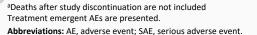
Change from Baseline	Overall Population		
at Month 30	Placebo (N=328)	Vutrisiran (N=326)	
6-MWT, n	285	294	
Median	-30.65	-7.50	
LS mean (SEM)	-71.88 (4.79)	-45.42 (4.62)	
LS mean difference (95% CI)	-	26.46 (13.38, 39.55)	
p-value	_	0.00008	
KCCQ-OS, n	298	306	
Median	-6.25	-1.30	
LS mean (SEM)	-15.49 (1.26)	-9.68 (1.19)	
LS mean difference (95% CI)	-	5.80 (2.40, 9.20)	
p-value	-	0.0008	
NYHA Class, n	328	326	
Stable or improved %	61	68	
Difference in % patients stable		8.7	
or improved (95% CI)	_	(1.3, 16.1)	
p-value	_	0.0217	




Impact of Vutrisiran on NT-proBNP, a Well-Established Cardiac Biomarker Prognostic of Mortality in ATTR-CM

Maintained relative stability in NT-proBNP levels compared to placebo

OVERALL & MONOTHERAPY POPULATIONS



Safety Profile Vutrisiran was well tolerated

	Overall Population		
AE Category, n (%)	Placebo (N=328)	Vutrisiran (N=326)	
AEs	323 (98.5)	322 (98.8)	
SAEs	220 (67.1)	201 (61.7)	
Severe AEs	194 (59.1)	158 (48.5)	
AE leading to treatment discontinuation	13 (4.0)	10 (3.1)	
Deaths ^a	63 (19.2)	49 (15.0)	

- The majority of AEs were mild or moderate
- No AEs seen ≥3% more frequently with vutrisiran compared with placebo
- Cardiac AEs were similar or lower with vutrisiran compared with placebo

For non-US HCPs, please contact medinfo@alnylam.com

Conclusions

Vutrisiran achieved statistical significance on primary and all secondary endpoints

- Reduced all-cause mortality and recurrent CV events in a contemporary population with ATTR CM, including substantial use of background therapy
- Demonstrated significant benefit on multiple clinical measures of disease progression, as well as NT-proBNP
- Results consistent across all prespecified subgroups, including patients on vutrisiran monotherapy and those on background tafamidis
- Acceptable safety and tolerability profiles, as previously established
- If approved, vutrisiran has the potential to become a standard of care for newly diagnosed patients and those progressing on stabilising therapies

Thank you to the patients, their families, investigators, study staff, and collaborators for their participation in the HELIOS-B study

Medical writing assistance was provided by Christopher Bulman, PhD, of Adelphi Communications Ltd, UK, and funded by Alnylam Pharmaceuticals in accordance with Good Publication Practice Guidelines. This study was funded by Alnylam Pharmaceuticals. If you are seeking additional scientific information related to Alnylam therapeutics, US HCPs may visit the Alnylam US Medical Affairs website at RNAiScience.com. Non-US HCPs should contact medinfo@alnylam.com

ORIGINAL ARTICLE

Vutrisiran in Patients with Transthyretin Amyloidosis with Cardiomyopathy

M. Fontana, J.L. Berk, J.D. Gillmore, R.M. Witteles, M. Grogan, B. Drachman,

- T. Damy, P. Garcia-Pavia, J. Taubel, S.D. Solomon, F.H. Sheikh, N. Tahara,
 - J. González-Costello, K. Tsujita, C. Morbach, Z. Pozsonyi, M.C. Petrie,
- D. Delgado, P. Van der Meer, A. Jabbour, A. Bondue, D. Kim, O. Azevedo,
- S. Hvitfeldt Poulsen, A. Yilmaz, E.A. Jankowska, V. Algalarrondo, A. Slugg,
- P.P. Garg, K.L. Boyle, E. Yureneva, N. Silliman, L. Yang, J. Chen, S.A. Eraly, J. Vest, and M.S. Maurer, for the HELIOS-B Trial Investigators*

Medical writing assistance was provided by Christopher Bulman, PhD, of Adelphi Communications Ltd, UK, and funded by Alnylam Pharmaceuticals in accordance with Good Publication Practice Guidelines. This study was funded by Alnylam Pharmaceuticals. If you are seeking additional scientific information related to Alnylam therapeutics, US HCPs may visit the Alnylam US Medical Affairs website at RNAiScience.com. Non-US HCPs should contact medinfo@alnylam.com