ALN-KHK, an Investigational RNA Interference Therapeutic, Successfully Targets Hepatic Ketohexokinase in a Single Ascending Dose Study of Overweight to Obese Adults

Eleftheria Maratos-Flier¹, Tirtha Nandi¹, Katherine L Boyle¹, Xingyu Li¹, Yuanfeng Wu¹, Leila Noetzli¹, Farshad Kajbaf¹, Gaetano Morelli² ¹Alnylam Pharmaceuticals, Cambridge, MA, USA; ²Altasciences, Montreal, QC, Canada

Conclusions

- In this single ascending dose study involving overweight to obese adults, subcutaneous administration of ALN-KHK, an investigational subcutaneous RNA interference therapeutic, showed an encouraging safety and tolerability profile.
- Target engagement was observed based on increasing serum fructose, urine fructose, and suppression of serum fibroblast growth factor 21 (FGF21) in a dose-dependent manner following a fructose tolerance test (FTT).

Introduction

Background

- Rising global obesity rates are attributed in part to excess fructose consumption from sucrose and high-fructose corn syrup.¹
- Relative to glucose, fructose is preferentially metabolized in the liver and can contribute to development of hepatic steatosis, which is strongly associated with hepatic insulin resistance and type 2 diabetes.^{1,2}
- Ketohexokinase (KHK) is an enzyme involved in the initial step of fructose metabolism that phosphorylates fructose to fructose-1-phosphate (F1P).
- Reducing hepatic KHK expression through small interfering RNA (siRNA)-mediated inhibition may decrease hepatic lipogenesis and increase insulin sensitivity, thus improving glycemic control in obese individuals with type 2 diabetes.

ALN-KHK

- ALN-KHK is an *N*-acetylgalactosamine (GalNAc)-conjugated, investigational, subcutaneously administered RNA interference therapeutic designed to decrease hepatic KHK expression (Figure 1).
- Preclinical studies have demonstrated that single subcutaneous doses of ALN-KHK provide potent and durable reduction in KHK protein.³

Figure 1. Mechanism of Action of ALN-KHK

ChREBP, carbohydrate response element binding protein; F1P, fructose-1-phosphate; FGF21, fibroblast growth factor 21; GalNAc, N-acetylgalactosamine; KHK, ketohexokinase; siRNA, small interfering RNA.

Aim

• To evaluate the safety, tolerability, and pharmacology of ALN-KHK in overweight to obese adults.

Methods

- Part A of this Phase 1/2 trial (NCT05761301) is a single ascending dose study of healthy overweight to obese adults (body mass index of 27–34.9 kg/m²) who were randomized to treatment with a single subcutaneous dose of ALN-KHK or placebo (Figure 2).
- Participants were observed for a 3-month double-blind period. After completion of the Month 3 visit, patients treated with ALN-KHK were observed for up to 6 months for safety
- assessments. The primary and select secondary endpoints are shown in Figure 2. • Target engagement was assessed through response to an FTT. For the FTT, after an
- overnight fast of 12–14 hours, participants consumed 75 g of fructose dissolved in water. — Fructose ingestion leads to an increase in circulating serum fructose and an associated increase in urinary fructose.
- Hepatic FGF21 is induced through the metabolism of fructose to F1P, which leads to an increase in circulating levels of the hepatokine FGF21; therefore FGF21 was used as a marker of target engagement.⁴ Based on its mechanism of action, treatment with ALN-KHK was expected to decrease circulating FGF21 following fructose ingestion.

Figure 2. Study Design

AE, adverse event; BMI, body mass index; f, fraction excreted; FGF21, fibroblast growth factor 21; PK, pharmacokinetics.

Results

Patient Population

• In total, 40 participants enrolled in the study, and cohorts were generally well balanced in terms of age and key disease-related baseline characteristics (Table 1).

— One participant in the 150 mg cohort discontinued the study early owing to a personal reason. A second participant in this cohort was lost to follow-up after Day 85 of the study.

Table 1. Patient Baseline Demographics

	ALN-KHK										
Demographic	Placebo (N=10)	25 mg (N=6)	75 mg (N=6)	150 mg (N=6)	300 mg (N=6)	600 mg (N=6)	Total ALN-KHK (N=30)	Total (N=40)			
Mean age,	42.8	49.7	46.5	46.0	45.0	44.0	46.2	45.4			
years (SD)	(7.2)	(9.2)	(16.0)	(11.9)	(14.2)	(14.3)	(12.5)	(11.5)			
Male, n (%)	7	6	3	5	2	4	20	27			
	(70.0)	(100.0)	(50.0)	(83.3)	(33.3)	(66.7)	(66.7)	(67.5)			
Race, n (%)											
White	9	6	4	4	4	4	22	31			
	(90.0)	(100.0)	(66.7)	(66.7)	(66.7)	(66.7)	(73.3)	(77.5)			
Black or African- American	1 (10.0)	0	2 (33.3)	1 (16.7)	1 (16.7)	2 (33.3)	6 (20.0)	7 (17.5)			
More than one race	0	0	0	1 (16.7)	1 (16.7)	0	2 (6.7)	2 (5.0)			
Mean BMI,	29.9	30.3	28.6	28.7	29.2	31.1	29.6	29.7			
kg/m² (SD)	(1.6)	(2.2)	(1.0)	(0.9)	(1.2)	(2.2)	(1.8)	(1.7)			
Mean HbA1c,	5.3	5.2	5.9	5.4	5.2	5.5	5.5	5.4			
% (SD)	(0.2)	(0.2)	(0.3)	(0.3)	(0.2)	(0.3)	(0.4)	(0.3)			

BMI, body mass index; HbA1c, glycated hemoglobin; SD, standard deviation.

Primary Endpoint: Safety and Tolerability

- Adverse events (AEs) were reported in 40% of participants receiving placebo and 33.3% of participants receiving ALN-KHK (Table 2).
- All AEs were mild, nonserious, and recovered or resolved.
- Two events (injection-site reactions) in the ALN-KHK 300 mg cohort were considered related to study drug; both cases were mild, transient, and resolved within 24 hours.

Table 2. Frequency of AEs

		ALN-KHK								
Patients with AEs, n (%)	Placebo (N=10, PY=2.7)	25 mg (N=6, PY=3.0)	75 mg (N=6, PY=2.8)	150 mg (N=6, PY=2.5)	300 mg (N=6, PY=4.1)	600 mg (N=6, PY=2.8)	Total ALN-KHK (N=30, PY=15.2)			
At least 1 AE	4 (40.0)	2 (33.3)	2 (33.3)	1 (16.7)	5 (83.3)	0	10 (33.3)			
At least 1 treatment- related AE	0	0	0	0	2 (33.3)	0	2 (6.7)			
Most common AEs ^a										
Diarrhea	2 (20.0)	0	2 (33.3)	0	3 (50.0)	0	5 (16.7)			
Headache	1 (10.0)	0	1 (16.7)	0	3 (50.0)	0	4 (13.3)			
Abdominal discomfort	1 (10.0)	0	0	1 (16.7)	1 (16.7)	0	2 (6.7)			
ISR	0	0	0	0	2 (33.3)	0	2 (6.7)			
Nausea	0	0	1 (16.7)	0	1 (16.7)	0	2 (6.7)			
Vomiting	0	0	0	0	2 (33.3)	0	2 (6.7)			

^aMost common AEs are those occurring in >5% of patients. AE, adverse event; ISR, injection site reaction; PY, patient-years.

Secondary Endpoint: Assessment of Plasma and Urine

Pharmacokinetics

- Peak plasma ALN-KHK was observed 3–10 hours after administration, and the elimination half-life was 5–8 hours. Concentrations of ALN-KHK in plasma were dose-proportional across the 25-600 mg dose range.
- Urinary excretion of ALN-KHK was less than 25%.

Secondary Endpoint: Change from Baseline in Circulating FGF21 After Fructose Tolerance Test

• Results of this first clinical study of ALN-KHK support its further evaluation in patients with type 2 diabetes and suggest the potential for quarterly or biannual subcutaneous dosing. - Part B of the study has been initiated and will evaluate multiple doses of ALN-KHK in obese patients with type 2 diabetes.

compared with Day -1 was 1633 (± 431) mg (**Figure 5**).

• Mean urinary fructose excretion fraction of the total 75 g fructose load peaked at Day 85 for ALN-KHK 600 mg at 2.3%.

• The mean suppression of serum FGF21 after FTT evident from change from baseline increased in a dose-dependent manner (Figure 6). Basal FGF21 level was not affected (data not shown)

• Mean reductions in FGF21-positive incremental AUC from Day -1 became more prominent with increasing doses of ALN-KHK (≥75 mg) through Day 85, with partial recovery at Day 169 (Figure 7).

REFERENCES

1. Fisher FM et al. Mol Metab 2016:6:14-21 2. Softic S et al. J Clin Invest 2017:127:4059–74.

3. Noetzli L et al. Poster 830-P presented at the 83rd Scientific Sessions of the American Diabetes Association (ADA),

June 23–26, 2023, San Diego, CA, USA. 4. Dushay JR et al. Mol Metab 2014;4:51-7

DISCLOSURES

EMF, TN, KLB, XL, YW, LN, and FK are employees of and report being shareholders in Alnylam Pharmaceuticals. **GM** reports being a principal investigator at Altasciences.

Thank you to the patients, their families, investigators, study staff, and collaborators for their participation in this study. Acknowledgments: Editorial assistance provided by PharmaGenesis Cardiff, Cardiff, UK, was funded by Alnylam Pharmaceuticals in accordance with Good Publication Practice (GPP 2022) guidelines.

Funding: This study was funded by Alnylam Pharmaceuticals