A new approach to HTT-lowering using C16-siRNA conjugates

William Cantley, PhD; Alnylam Pharmaceuticals

APRIL 26^{TH,} 2023

This work is being conducted as a partnership between Alnylam Pharmaceuticals and Regeneron Pharmaceuticals, Inc.

IRNAi Therapeutics

Clinically Established Platform in Liver

Adaptation of the siRNA Platform for CNS Delivery

Modified from 2018 TIDES: Delivering on RNAi Therapeutics: Patisiran and Beyond.

3

ullet

C16- siRNA Conjugates Enable Robust and Durable Target Knockdown and Distribution in Rat CNS Post Intrathecal (IT) Injection

Unconjugated or C16-modified siRNA administered as single IT bolus injection to rats at 0.9 mg. siRNA biodistribution was assessed in whole brain at 24 h post-dose using IHC with anti-siRNA antibody

Example Rodent PD Data

4 CONFIDENTIAL **Expanding RNAi therapeutics to extrahepatic tissues with lipophilic conjugates** Brown et al., Nature Biotechnology, 2022

Potent, Durable Reduction of sAPP α and β in CNS of NHPs

sAPP Knockdown with Single Intrathecal 60 mg Dose of siRNA targeting APP mRNA

5

Results

- >50% APP reduction
- Well-tolerated out to 6 months
- Durability of effect consistent with infrequent IT dosing

Potential Applications for C16-siRNA Conjugates

Devastating diseases with enormous burden and unmet need

Many dominantly inherited neurodegenerative diseases:

- Alzheimer's disease
- Amyotrophic lateral sclerosis (ALS)
- Cerebral amyloid angiopathy
- Frontotemporal dementia

- Huntington's disease
- Multi-system atrophy
- Parkinson's disease
- Spinocerebellar ataxia

Large number of genetically validated targets, but few disease-modifying therapies exist for these devastating, life threatening disorders

RNAi therapeutics could potentially offer a new approach

HTT Lowering is a Leading Therapeutic Approach for HD

¹ UniQure, 2022 **CONFIDENTIAL**² Tabrizi et.al., NEJM, 2019 ³Keller et.al., Nature Communications, 2022 ⁴PTC Bio. 2021 ⁵ Carroll et.al. Molecular Therapy, 2011 ⁶Tabrizi et.al., *Neuron*, 2019 ⁷Bhattacharyya et.al, Nature Communications, 2021
⁸Leavitt et.al, JAMA Neurology, 2020

Biology of Antisense and RNAi Pathways

Distinct mechanisms for Single-Stranded "DNA" vs Double-Stranded "RNA"

Multiple Opportunities for HTT Targeting with RNAi

Impact of Targeting Location on HTT mRNA

Desired Undesired		HTT siRNA Targeting Strategy					
		HTT _{EX1} siRNA	HTT _{IN1} siRNA	HTT _{FL} siRNA	HTT _{SNP} siRNA		
mRNA Targeted	mHTT - Full Length	HITS 🕹	MISSES	HITS 🏠	HITS 🌢		
	mHTT – HTT1a	HITS 🌢	HITS 🍐	MISSES 🡎	MISSES 🡎		
	wtHTT – Full Length	HITS 🧐	MISSES 🏠	HITS 🥠	MISSES 🌜		

Identifying a Potent and Specific Duplex

"Screening Funnel"

|| HTT Transcript Engagement Impacted by Targeting Location

Q175 mouse Striatal Tissue; 3-Month Post-Dose

Full-Length HTT Transcript

CONFIDENTIAL

11

HTT1a Fragment Transcript

The QuantiGene Plex Assay. Data are presented as mean ± SEM, n = 3-10 per group. Statistical significances **** p < 0.0001, Q175 WT Si-Control 12 mo & Q175 HET HTT Ex1 12 mo vs. Q175 HET Si-Control 12 mo (Unpaired t test with Welch correction/Welch's ANOVA test, Dunnett's T3 multiple comparisons test).

Characterizing HTT Target Engagement in NHP with a C16-siRNA 3-Month Dose Range Exploratory Study of a HTT Targeting siRNA

Objective: Characterize potency & tolerability of a HTT targeting siRNA across range of dose levels

	Group No.		NHP		
		Treatment Condition	N	Nx Day	
	1	aCSF	3	85	
	2	HTT siRNA: High Dose	5	85	
	3	HTT siRNA: Mid Dose	8	85, 171	
	4	HTT siRNA: Low Dose	8	85	
	5	HTT siRNA: Very-Low Dose	5	85	
	TDOSE	3-month Nt			6-month N
NHP – Non-Human Primate IT – Intrathecal KD - Knockdown Nx - Necropsy 12 CONFIDENTIAL	وا Weekly Clini Monthly Neu Serial CSF (cal Obs. iro Evals. Collections	Tissue KD Histopatho	Tissue KD Histopathological Evaluation	

HTT Protein Remaining 3-Months After Single IT Dose

- aCSF
- HTT siRNA (Very Low Dose)
- HTT siRNA (Low Dose)
- HTT siRNA (Mid Dose)
- HTT siRNA (High Dose)

HTT Protein Reduction in Cortex and Caudate 3 months after single IT dose

HTT Protein Reduction in Cortex 3 months after single IT dose

HTT Protein Remaining DLPC

HTT IHC in Cortex

HTT Protein Reduction 3- and 6-months after single IT dose

Tolerability Profile w/ 3-6 Month Sustained HTT Lowering in NHP

NfL from Longitudinal CSF Collections, Histopath Evaluation from Terminal Tissue

In-Life Evaluation: Weekly Clinical Observations % Change Rel to Predose Monthly Neuro Evaluations 2500 - aCSF All Animals % Change HTT siRNA (Very Low Dose) (92000 – sop 91500 – J No treatment-associated adverse findings in NHPs HTT siRNA (Low Dose) treated with HTT siRNA at HTT siRNA (Mid Dose) any dose level (Rel. to 2001 1000 N F L HTT siRNA (High Dose) CSF Histopathological Evaluations: 500-15 sections per brain per animal Analyzed via H&E 57 84 -9 1 814 28 144 170 114 No treatment-associated Timepoint (days) adverse findings in NHPs treated with HTT siRNA at any dose level

||Summary and Looking Forward

- Introduced C16-siRNA as a new approach for HTT lowering in the CNS
- Established differential engagement of HTT transcripts based on siRNA targeting location
- Demonstrated robust, tolerated HTT-lowering at 3- and 6-months after a single IT dose, as determined by terminal tissue protein levels, CSF NfL and histopathological evaluation
- Continue to explore HTT-targeting approaches & feasibility; work toward identifying potential development candidates
- Assess learnings from past & present clinical stage HTT-lowering programs
- Engage with the HD community to explore how our C16-siRNA platform might add value to the HD therapeutics landscape as a potential new way to pursue HTTlowering

Thank You!

Questions?