Phase 3 Study, HELIOS-A, in hATTR Amyloidosis Patients Evaluating a Single Dose Regimen

Gabriel J. Robbie, Ph.D. October 5, 2022

ATTR Amyloidosis

Rare, Progressively Debilitating, and Fatal Disease

Description

2

Caused by misfolded TTR protein that accumulates as amyloid deposits in multiple tissues including heart, nerves, and GI tract¹

RNAi Therapeutic Hypothesis in ATTR Amyloidosis

Silencing TTR Gene Expression to Address Underlying Cause of Disease

Patisiran: Clinical Development in hATTR Polyneuropathy

Clinical development of patisiran - Phase 1 to Phase 3

APOLLO Study: Serum TTR Reduction

Sustained serum TTR reduction with patisiran treatment

SEM=Standard error of the mean; Adams et al., EU-ATTR Meeting, Nov 2017

5

APOLLO - Key Efficacy Data

Clinically and statistically-significant improvements in neuropathy and quality of life compared to placebo at 18 months

All other secondary endpoints which all directly assess key clinical outcomes showed statistically significant (p < 0.001) improvement compared to placebo at 18 months

- Improved motor strength (NIS-Weakness)
- Reduced disability (Rasch-built Overall Disability Scale, R-ODS)
- Faster gait speed (10 meter walk test)
- Improved nutritional status (modified body mass index, mBMI)
- Reduced autonomic symptoms (COMPASS 31)

MMRM, mixed-effects model repeated measures; mITT, modified intent to treat; Pati, patisiran; PBO, placebo; CFB, change from baseline

6 mNIS+7 reference range: 0-304 points

APOLLO Study: mNIS+7 Change From Baseline

Significant clinical effect of patisiran in hATTR-PN patients

7

Vutrisiran a Subcutaneous Therapeutic for hATTR

Patisiran

Approved RNAi Therapeutic for Treatment of Polyneuropathy of hATTR Amyloidosis

Vutrisiran

- IV administration, once every 3 weeks (premedication required)
- Approved, based on data from the pivotal APOLLO phase 3 study

- RNAi therapeutic targeting TTR mRNA, covalently linked to a ligand containing three Nacetylgalactosamine (GalNAc) residues to enable specific delivery of siRNA to hepatocytes
- Subcutaneous administration
- Potential for less frequent dosing

Vutrisiran: Serum TTR Reduction

9

Dose dependent TTR reduction over a wide range of single SC dose levels

Mean maximum TTR KD of 83% after single 25 mg dose*

• All doses well tolerated; increase in ALT (>3xULN) observed at 200 mg dose level in one subject

SEM= Standard error of the mean; * Taubel J, et al. Phase 1 Study of ALN-TTRsc02, a Subcutaneously Administered Investigational RNAi Therapeutic for the Treatment of Transthyretin-Mediated Amyloidosis. ISA 2018: XVIIth International Symposium of Amyloidosis; Kumamoto, Japan; March 2018 (poster)

Leveraging Model Based Analysis For Vutrisiran Development

Development questions for vutrisiran after phase 1 study

- 1. Can a similar magnitude of TTR reduction as patisiran be achieved with multiple dosing of vutrisiran?
- 2. Can we skip the phase 2 study and go directly from single dose study in healthy volunteers to multiple-dose pivotal phase 3 study in patients?
- 3. What is the optimal dose and dosing frequency for the phase 3 study?
- 4. Can we use a 9-month endpoint for mNIS+7?

Phase 3 Model Predictions: Serum TTR Reduction

85% TTR reduction predicted with 25 mg q3M vutrisiran

TTR lowering slightly better than patisiran

- Vutrisiran (median)
- Vutrisiran (90% PI)
- Patisiran-APOLLO (median)
- -- Patisiran-APOLLO (5th and 95th)

Phase 3 Model Predictions: mNIS+7

Vutrisiran 25 mg q3M predicted to be similar to patisiran

- Model predicted halting or reversal of disease progression (∆mNIS+7 ≤ 0) at month-9 with 25 mg q3M vutrisiran
- mNIS+7 decrease of 4 points from baseline predicted at month-18 with 25 mg q3M vutrisiran

Decision to Proceed to Phase 3

Regulatory Agencies accepted model-based rationale to accelerate development

- FDA, EMA and PMDA approved acceleration from single dose in healthy volunteers to pivotal longterm phase 3 study in hATTR amyloidosis patients with polyneuropathy
- Agreed with proposed phase 3 vutrisiran dosing regimen of 25 mg (fixed dose) administered q3M

Vutrisiran: Clinical Development in hATTR-PN

HELIOS-A Primary Analysis Results at Month 9

Observed data is in agreement with model predictions for TTR, mNIS+7 and safety

• No clinically relevant ALT elevation (> 3x ULN) with vutrisiran

¹⁵ LS=Least squares; SE=Standard error of the mean; LSMD=Least squares mean difference; CI=Confidence interval

HELIOS-A Met Primary and Secondary Endpoints at Month 9

Change from Baseline Endpoint	APOLLO Placebo (N=77) LS mean (95% Cl)	Vutrisiran (N=122) LS mean (95% CI)	Vutrisiran – Placebo LS mean difference (95% Cl)	P-value
mNIS+7	14.8 (10.8, 18.7)	-2.2 (-5.0, 0.6)	-17.0 (-21.8, -12.2)	3.5 x 10 ⁻¹²
Norfolk QOL-DN total score	12.9 (8.5, 17.3)	-3.3 (-6.6, -0.1)	-16.2 (-21.7, -10.8)	5.4 x 10 ⁻⁰⁹
10-MWT (m/s)	-0.133 (-0.182, -0.083)	-0.001 (-0.038, 0.036)	0.131 (0.070, 0.193)	3.1 x 10 ⁻⁰⁵
mBMI (exploratory)*	-60.2 (-80.1, -40.4)	7.6 (-7.9, 23.0)	67.8 (43.0, 92.6)	8.5 x 10 ⁻⁰⁸

- All sensitivity analyses demonstrated consistent estimate of treatment effect of vutrisiran compared to placebo (APOLLO) on mNIS+7 and Norfolk QOL at Month 9
- Evidence of reversal of polyneuropathy manifestations
 - Majority of patients showed improvement in mNIS+7 and Norfolk QOL relative to baseline

*At Month 9, the vutrisiran group showed improvement in nutritional status as assessed by mBMI compared to the placebo group, nominal p value.

Month 18 HELIOS-A results

- Statistical significance (p ≤ 0.05) achieved for all Month 18 clinical efficacy endpoints per the prespecified multiple comparisons procedure
- Non-inferiority of vutrisiran (versus within study patisiran) was declared in Trough TTR percent reduction

Endpoint (Superiority)	Placebo (N=77) LS mean (95% Cl)	Vutrisiran (N=122) LS mean (95% CI)	Vutrisiran – Placebo LS mean difference (95% Cl)	P-value
mNIS+7	28.09 (23.58, 32.59)	-0.46 (-3.61, 2.69)	-28.55 (-34.00, -23.10)	6.505E-20
Norfolk QoL-DN	19.8 (14.7, 24.9)	-1.2 (-4.8, 2.4)	-21.0 (-27.1, -14.9)	1.844E-10
10-MWT	-0.264 (-0.334, -0.194)	-0.024 (-0.075, 0.026)	0.239 (0.154, 0.325)	1.207E-07
mBMI	-115.7 (-142.2, -89.1)	25.0 (6.3, 43.8)	140.7 (108.4, 172.9)	4.159E-15
R-ODS	-9.9 (-11.5, -8.3)	-1.5 (-2.6, -0.3)	8.4 (6.5, 10.4)	3.541E-15
Endpoint (Non-inferiority)	Vutrisiran (N=120) HL median ¹	Patisiran (N=40) HL median ¹	Vutrisiran – Patisiran HL median difference ² (95% CI)	Noninferiority (95% lower Cl > - 10%)
Trough TTR percent reduction	84.67	80.60	5.28 (1.17, 9.25)	Yes

 Vutrisiran demonstrated an acceptable safety profile Adverse events were consistent with the underlying disease; informed by observations on the placebo arm of APOLLO

Vutrisiran is fifth approved RNAi therapeutic

18

Evaluation of Alternate Dosing Regimen

Modeling performed to evaluate feasibility of reduced dosing frequency (q6M vs q3M)

- A model-based analysis was used to predict pharmacodynamics (TTR) and clinical efficacy (mNIS+7) after different dosing regimens of vutrisiran.
- Based on simulation results, 25 mg q3M regimen was identified as the optimal Phase 3 dose.
- Facilitated a well-informed decision and regulatory acceptance of dose selection for HELIOS-A (Phase 3) study.
- Observed pharmacodynamic, clinical efficacy and safety results from HELIOS-A were in agreement with model predictions.
- A model-based analysis led to significant savings in time and resources during development (skipped Phase 2 study) and enabled faster access of vutrisiran to patients.