HELIOS-A: Impact of Vutrisiran on Quality of Life and Functional Status in Hereditary Transthyretin-Mediated Amyloidosis with Polyneuropathy

Senda Ajroud-Driss,1 John L. Berk,2 David Adams,3 Julian Gillmore,4 Kon-Ping Lin,5 Parag Kale,6 Haruki Koike,7 Emre Aldinc,8 Chongshu Chen,8 John Vest,8 Laura Obici9

1Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; 2Boston Medical Center, Boston, MA, USA; 3Neurology Department, Université Paris-Saclay, U1195, INSERM, Neurology Department, AP-HP, CHU Bicêtre, Le Kremlin Bicêtre, France; 4National Amyloidosis Centre, University College London, Royal Free Hospital, London, UK; 5Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; 6Baylor University Medical Center, Dallas, TX, USA; 7Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan; 8Alnylam Pharmaceuticals, Cambridge, MA, USA; 9Amyloidosis Research and Treatment Centre; IRCCS Fondazione Policlinico San Matteo, Pavia, Italy

May 14–17, 2022 || Peripheral Nerve Society (PNS)
Disclosures for Senda Ajroud-Driss

<table>
<thead>
<tr>
<th>Conflict</th>
<th>Disclosures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advisory board</td>
<td>Alnylam Pharmaceuticals, Amylyx Pharmaceuticals, Biogen, Orphazyme</td>
</tr>
<tr>
<td>Research support</td>
<td>Alnylam Pharmaceuticals, Amylyx Pharmaceuticals, Biogen</td>
</tr>
<tr>
<td>Speakers bureau</td>
<td>Alnylam Pharmaceuticals</td>
</tr>
</tbody>
</table>
Background and Rationale

hATTR Amyloidosis, Also Known as ATTRv Amyloidosis

- Rare, underdiagnosed, inherited, rapidly progressive, debilitating, and fatal disease\(^1-4\)
- Caused by variants in the \(TTR\) gene that result in misfolded TTR accumulating as amyloid deposits in multiple organs and tissues\(^1-4\)
 - The majority of individuals develop a mixed phenotype of polyneuropathy and cardiomyopathy\(^5,6\)
- Progression of hATTR amyloidosis is associated with a deterioration in QOL and physical functioning\(^7-10\)

Vutrisiran

- Investigational, subcutaneously administered RNAi therapeutic targeting hepatic production of variant and wt TTR in development for the treatment of ATTR amyloidosis\(^11,12\)

Patisiran

- RNAi therapeutic administered Q3W via IV infusion, approved for the treatment of the polyneuropathy of hATTR amyloidosis based on the Phase 3, placebo-controlled APOLLO trial\(^13,14\)

Therapeutic Hypothesis

Vutrisiran and patisiran act to target both variant and wt TTR

Unstable circulating TTR tetramers **reduced**

Organ deposition of monomers, amyloid (β-pleated fibrils **prevented**; clearance **promoted**

Disease manifestation **stabilization or improvement**

ESC-GalNAc platform utilized by vutrisiran allows for Q3M SC injection\(^11,12\)

ATTR, transthyretin-mediated; ATTRv, hereditary transthyretin (v for variant); ESC, enhanced stabilization chemistry; GaINAc, N-acetylgalactosamine; hATTR, hereditary transthyretin-mediated; IV, intravenous; Q3M, every 3 months; Q3W, every 3 weeks; RNAi, ribonucleic acid interference; SC, subcutaneous; TTR, transthyretin; wt, wild-type

Vutrisiran Phase 3 HELIOS-A Study

Global, Randomized, Open-Label Study in Patients with hATTR Amyloidosis with Polyneuropathy

- The 18-month QOL analysis is presenteda; for all endpoints, vutrisiran was compared with the external placebo group (placebo arm of APOLLO1), selected on the basis of similar eligibility criteria and endpoints.

\begin{itemize}
 \item \textbf{Patient population} \\
 \textbf{N=164} \\
 \begin{itemize}
 \item 18–85 years old \\
 \item hATTR amyloidosis; any TTR variant \\
 \item NIS 5–130 and PND ≤IIIB \\
 \item KPS ≥60% \\
 \item Prior TTR stabilizer use permitted
 \end{itemize}
 \end{itemize}

\begin{itemize}
 \item \textbf{3:1 RANDOMIZATION} \\
 \textbf{n=122} \\
 \begin{itemize}
 \item Vutrisiran 25 mg SC Q3M
 \end{itemize}
 \end{itemize}

\begin{itemize}
 \item \textbf{n=42} \\
 \begin{itemize}
 \item Reference group (patisiran) 0.3 mg/kg IV Q3W
 \end{itemize}
 \end{itemize}

\begin{itemize}
 \item \textbf{Primary endpoint (previously presented2)} \\
 \begin{itemize}
 \item Change from baseline in mNIS+7b at Month 9
 \end{itemize}
 \end{itemize}

\begin{itemize}
 \item \textbf{Selected secondary endpoints} \\
 \begin{itemize}
 \item Change from baseline in: \\
 \begin{itemize}
 \item Norfolk QOL-DNc total score and individual domains at Months 9 and 18 \\
 \item 10-MWTd at Months 9 and 18 \\
 \item R-ODSe at Month 18 \\
 \item mBMIf at Month 18
 \end{itemize}
 \end{itemize}
 \end{itemize}

\begin{itemize}
 \item \textbf{Selected exploratory endpoints} \\
 \begin{itemize}
 \item Change from baseline in: \\
 \begin{itemize}
 \item EQ-VASg at Months 9 and 18 \\
 \item R-ODS and mBMI at Month 9 \\
 \item Proportion of patients with stable, improved, or worsened KPSh from baseline at 18 months
 \end{itemize}
 \end{itemize}
 \end{itemize}

\begin{itemize}
 \item \textbf{Secondary endpoint} \\
 \begin{itemize}
 \item % serum TTR reduction to Month 18i
 \end{itemize}
 \end{itemize}

aThe results presented for 9- and 18-month efficacy endpoints (except for KPS) are based on a mixed-effects model for repeated measures analysis.1Higher scores of mNIS-7 indicate more neurologic impairment (range: 0–304).2Higher scores of Norfolk QOL ON indicate worse QOL (range: −4 to 136).310-MWT speed (m/s) = 10 meters/mean time (seconds) taken to complete 2 assessments at each visit, imputed as 0 for patients unable to perform the walk; lower speeds indicate worse ambulatory function.4Lower scores of R-ODS indicate more disability (range: 0–48). Lower scores of mBMI (weight [in kg/m2] × serum albumin [in g/L]) indicate worse nutritional status.5EQ-VAS (range: 0–100) 0 = best health, 100 = worst health.6KPS measures functional status on an 11-point scale correlating to % values. 100% (normal; no evidence of disease); 0% (death). Higher scores indicate less functional impairment. Non-inferiority analysis

Baseline Demographic and Disease Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>APOLLO Placebo (n=77)</th>
<th>Vutrisiran (n=122)</th>
<th>Patisiran (n=42)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (range), years</td>
<td>63 (34–80)</td>
<td>60 (26–85)</td>
<td>60 (31–81)</td>
</tr>
<tr>
<td>Males, n (%)</td>
<td>58 (75.3)</td>
<td>79 (64.8)</td>
<td>27 (64.3)</td>
</tr>
<tr>
<td>Median time since hATTR amyloidosis diagnosis, years (range)</td>
<td>1.41 (0.0–16.5)</td>
<td>1.94 (0.0–15.3)</td>
<td>2.39 (0.1–12.5)</td>
</tr>
<tr>
<td>TTR genotype, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V30M</td>
<td>40 (51.9)</td>
<td>54 (44.3)</td>
<td>20 (47.6)</td>
</tr>
<tr>
<td>Early-onset V30M (<50 years)</td>
<td>10 (13.0)</td>
<td>25 (20.5)</td>
<td>8 (19.0)</td>
</tr>
<tr>
<td>Non-V30M</td>
<td>37 (48.1)</td>
<td>68 (55.7)</td>
<td>22 (52.4)</td>
</tr>
<tr>
<td>Previous tetramer stabilizer use, n (%)</td>
<td>41 (53.2)</td>
<td>75 (61.5)</td>
<td>33 (78.6)</td>
</tr>
<tr>
<td>NIS, mean (range)</td>
<td>57.0 (7.0–125.5)</td>
<td>43.0 (5.0–127.0)</td>
<td>43.1 (5.5–115.6)</td>
</tr>
<tr>
<td>PND scoreb, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I: Preserved walking, sensory disturbances</td>
<td>20 (26.0)</td>
<td>44 (36.1)</td>
<td>15 (35.7)</td>
</tr>
<tr>
<td>II: Impaired walking but can walk without stick or crutch</td>
<td>23 (29.9)</td>
<td>50 (41.0)</td>
<td>17 (40.5)</td>
</tr>
<tr>
<td>IIIA: Walk with 1 stick or crutch</td>
<td>22 (28.6)</td>
<td>16 (13.1)</td>
<td>7 (16.7)</td>
</tr>
<tr>
<td>IIIB: Walk with 2 sticks or crutches</td>
<td>11 (14.3)</td>
<td>12 (9.8)</td>
<td>3 (7.1)</td>
</tr>
<tr>
<td>Cardiac subpopulation, n (%)</td>
<td>36 (46.8)</td>
<td>40 (32.8)</td>
<td>14 (33.3)</td>
</tr>
</tbody>
</table>

a The non-V30M TTR genotype represents 24 different variants in HELIOS-A.
bOne patient (1.3%) in the external placebo group had a PND score of IV defined as confined to wheelchair or bedridden (not shown on the slide). cCardiac subpopulation was defined as patients who had pre-existing evidence of cardiac amyloid involvement (baseline LV wall thickness ≥1.3 cm and no aortic valve disease or hypertension in medical history).
LV, left ventricular; NIS, Neuropathy Impairment Score; PND, polyneuropathy disability; TTR, transthyretin.
Vutrisiran achieved a mean steady-state serum TTR reduction from baseline of 88% (SD: 16%), which was non-inferior to that observed with the within-study patisiran reference group over 18 months (median difference [vutrisiran–patisiran] [95% CI]: 5.28% [1.17, 9.25], lower limit of CI >–10%).

Rapid and Sustained Reduction in Serum TTR Levels with Vutrisiran

Percent Change from Baseline in Serum TTR Levels
Improvement in Quality of Life with Vutrisiran vs External Placebo at Month 9\(^1\) and Month 18

- At Month 18, 56.8% of vutrisiran-treated patients had an improvement in Norfolk QOL-DN total score, relative to baseline, compared with 10.4% of patients in the external placebo group (odds ratio [95% CI]: 11.3 [5.0, 25.7])

Norfolk QOL-DN LS Mean Change from Baseline\(^a\)

\(^a\)\(mITT\) population (all randomized patients who received any amount of study drug). Value of \(n\) is the number of evaluable patients at each timepoint. Higher scores of Norfolk QOL-DN indicate worse quality of life (range: –4 to 136). At baseline, the mean (± SD) Norfolk QOL-DN score was 47.1 (26.3) in the vutrisiran group and 55.5 (24.3) in the external placebo group. Data plotted are MMRM model data.

CI, confidence interval; LS, least squares; LSMD, LS mean difference; \(mITT\), modified intent-to-treat; MMRM, mixed-effects model for repeated measures; Norfolk QOL-DN, Norfolk Quality of Life Diabetic Neuropathy; SD, standard deviation; SE, standard error

1. Adams et al. Neurology 2021;96(15 Suppl.)1234
Higher scores of Norfolk QOL-DN indicate worse quality of life (range: −4 to 136). At baseline, the mean (±SD) Norfolk QOL-DN score was 47.1 (26.3) in the vutrisiran group and 55.5 (24.3) in the external placebo group. Mean (±SD) Norfolk QOL-DN scores in individual domains were: 23.2 (13.8) in the vutrisiran group and 28.7 (13.0) in the external placebo group (physical functioning/large fiber); 5.7 (5.7) in the vutrisiran group and 7.8 (6.0) in the external placebo group (activities of daily living); 11.0 (6.1) in the vutrisiran group and 11.2 (5.8) in the external placebo group (symptoms); 4.6 (4.2) in the vutrisiran group and 5.0 (4.1) in the external placebo group (small fiber); and 2.7 (2.9) and 2.9 (2.9) in the external placebo group (autonomic).

ADL, activities of daily living; LS, least squares; Norfolk QOL-DN, Norfolk Quality of Life Diabetic Neuropathy; SD, standard deviation; SE, standard error.
Improvement in EQ-VAS with Vutrisiran vs External Placebo at Month 9 and Month 18

EQ-VAS LS Mean Change from Baseline^a

<table>
<thead>
<tr>
<th>LS mean (SE) change from baseline</th>
<th>Vutrisiran</th>
<th>Placebo (APOLLO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Month 9</td>
<td>-7.0 (2.0)</td>
<td>-11.6 (2.1)</td>
</tr>
<tr>
<td>Month 18</td>
<td>-11.6 (2.1)</td>
<td>-11.6 (2.1)</td>
</tr>
</tbody>
</table>

^a mITT population (all randomized patients who received any amount of study drug). Value of n is the number of evaluable patients at each timepoint. Data plotted are MMRM model data. At baseline, the mean (± SD) EQ-VAS was 64.5 (18.5) in the vutrisiran group and 54.6 (18.0) in the external placebo group.

CI, confidence interval; EQ-VAS, EuroQol Visual Analog Scale; LS, least squares; LSMD, LS mean difference; mITT, modified intent-to-treat; MMRM, mixed-effects model for repeated measures; SD, standard deviation; SE, standard error.
Improvements in R-ODS and 10-MWT with Vutrisiran vs External Placebo at Month 9 and Month 18

10-MWT LS Mean Change from Baseline (m/s)\(^a\)

-10-MWT, 10-meter walk test; CI, confidence interval; LS, least squares; LSMD, LS mean difference; mITT, modified intent-to-treat; MMRM, mixed-effects model for repeated measures; R-ODS, Rasch-built Overall Disability Scale; SD, standard deviation; SE, standard error

R-ODS LS Mean Change from Baseline\(^a\)

\(^a\)mITT population (all randomized patients who received any amount of study drug). Value of n is the number of evaluable patients at each timepoint. Data plotted are MMRM model data. At baseline, the mean (± SD) 10-MWT was 1.006 (0.393) in the vutrisiran group and 0.790 (0.319) in the external placebo group. At baseline, the mean (± SD) R-ODS was 34.1 (11.0) in the vutrisiran group and 29.8 (10.8) in the external placebo group.
A Higher Proportion of Patients Had Stable or Improved KPS with Vutrisiran vs External Placebo at Month 18

- The majority of patients in the vutrisiran group (71.3%) had stable or improved\(^a\) KPS at Month 18 compared with baseline (exploratory endpoint)
 - In the external placebo group, 42.8% of patients had stable or improved KPS at Month 18

\(^a\)Improvement is defined as an increase in KPS score from baseline.\(^b\)On the KPS scale of 0–100%, 17 (14%), 25 (21%), 48 (39%), 27 (22%), and 5 (4%) of vutrisiran-treated patients had a score of 60, 70, 80, 90, and 100, respectively, at baseline KPS, Karnofsky performance score
Improvement in mBMI with Vutrisiran vs External Placebo at Month 9 and Month 18

- The favorable effect of vutrisiran on mBMI compared with the external placebo group was observed at the first post-baseline assessment at Month 3

mBMI LS Mean Change from Baseline

![Graph showing mBMI LS Mean Change from Baseline](image)

- LS mean (SE) change from baseline
- Baseline
- Month 3 (Day 85)
- Month 9
- Month 18

Vutrisiran

Placebo (APOLLO)

n=68

n=122

n=77

n=113

n=114

n=115

n=71

n=77

n=122

LSMD (95% CI): 34.3 (12.6, 56.0)

LSMD (95% CI): 68.6 (45.1, 92.1)

LSMD (95% CI): 140.7 (108.4, 172.9)

p = 4.2 \times 10^{-15}

mIT1 population (all randomized patients who received any amount of study drug). Value of n is the number of evaluable patients at each timepoint. Data plotted are MMRM model data. At baseline, the mean (± SD) mBMI was 1057.4 (233.8) in the vutrisiran group and 989.9 (214.2) in the external placebo group.

CI, confidence interval; LS, least squares; LSMD, LS mean difference; mBMI, modified body mass index; mITT, modified intent-to-treat; MMRM, mixed model for repeated measures; SD, standard deviation; SE, standard error.
HELIOS-A Vutrisiran Efficacy Results Consistent with APOLLO Patisiran at Month 18

Vutrisiran Efficacy\(^a\) vs External Placebo

<table>
<thead>
<tr>
<th>Clinical Endpoints</th>
<th>HELIOS-A</th>
<th>Clinical Endpoints</th>
<th>APOLLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>mNIS+7</td>
<td></td>
<td>mNIS+7</td>
<td></td>
</tr>
<tr>
<td>Norfolk QOL-DN</td>
<td></td>
<td>Norfolk QOL-DN</td>
<td></td>
</tr>
<tr>
<td>10-MWT</td>
<td></td>
<td>10-MWT</td>
<td></td>
</tr>
<tr>
<td>R-ODS</td>
<td></td>
<td>R-ODS</td>
<td></td>
</tr>
<tr>
<td>mBMI</td>
<td></td>
<td>mBMI</td>
<td></td>
</tr>
</tbody>
</table>

Cardiac Endpoints

<table>
<thead>
<tr>
<th>HELIOS-A</th>
<th>APOLLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV Wall Thickness</td>
<td></td>
</tr>
<tr>
<td>Longitudinal Strain (%)</td>
<td></td>
</tr>
<tr>
<td>LV End-Diastolic Volume</td>
<td></td>
</tr>
<tr>
<td>Cardiac Output</td>
<td></td>
</tr>
<tr>
<td>NT-proBNP</td>
<td></td>
</tr>
</tbody>
</table>

Patisiran Efficacy\(^b\) vs Placebo

<table>
<thead>
<tr>
<th>Clinical Endpoints</th>
<th>HELIOS-A</th>
<th>Clinical Endpoints</th>
<th>APOLLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>mNIS+7</td>
<td></td>
<td>mNIS+7</td>
<td></td>
</tr>
<tr>
<td>Norfolk QOL-DN</td>
<td></td>
<td>Norfolk QOL-DN</td>
<td></td>
</tr>
<tr>
<td>10-MWT</td>
<td></td>
<td>10-MWT</td>
<td></td>
</tr>
<tr>
<td>R-ODS</td>
<td></td>
<td>R-ODS</td>
<td></td>
</tr>
<tr>
<td>mBMI</td>
<td></td>
<td>mBMI</td>
<td></td>
</tr>
</tbody>
</table>

Cardiac Endpoints

<table>
<thead>
<tr>
<th>HELIOS-A</th>
<th>APOLLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV Wall Thickness</td>
<td></td>
</tr>
<tr>
<td>Longitudinal Strain (%)</td>
<td></td>
</tr>
<tr>
<td>LV End-Diastolic Volume</td>
<td></td>
</tr>
<tr>
<td>Cardiac Output</td>
<td></td>
</tr>
<tr>
<td>NT-proBNP</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)HELIOS-A mITT population. \(^b\)APOLLO mITT population. The HELIOS-A patisiran arm was not intended for statistical testing vs vutrisiran for the endpoints listed.

10-MWT, 10-meter walk test; LV, left ventricular; mBMI, modified body mass index; mITT, modified intent-to-treat; mNIS+7, modified Neuropathy Impairment Score +7; Norfolk QOL-DN, Norfolk Quality of Life Diabetic Neuropathy; NT-proBNP, N-terminal pro-brain natriuretic peptide; R-ODS, Rasch-built Overall Disability Scale.
Summary

- At Month 18, patients in the vutrisiran group demonstrated significant improvements in measures of
 - **Quality of life** (Norfolk QOL-DN, EQ-VAS) compared with external placebo
 - The treatment effect favoring vutrisiran over external placebo was consistent across all Norfolk QOL-DN domains at Month 18
 - **Functional status** (gait speed [10-MWT], disability [R-ODS], KPS) compared with external placebo
 - The majority (71%) of patients in the vutrisiran group improved or stabilized in the exploratory assessment of KPS score compared with baseline, whereas 43% of patients in the external placebo group improved or stabilized in KPS score compared with baseline
 - **Nutritional status** (mBMI) compared with external placebo

- The efficacy and safety of vutrisiran will continue to be characterized in the ongoing HELIOS-A randomized extension period in patients with hATTR amyloidosis with polyneuropathy
Thank you to the patients, their families, investigators, study staff, and collaborators for their participation in the **HELIOS-A study**