Efficacy and Safety of Givosiran in Patients with Acute Hepatic Porphyria

24-Month Interim Analysis of the Phase 3 ENVISION Randomised Clinical Trial

Herbert L. Bonkovsky¹; Paolo Ventura²; Laurent Gouya³; Paula Aguilera-Peiró⁴; D. Montgomery Bissell⁵; Penelope E. Stein⁶; Manisha Balwani⁷; D. Karl E. Anderson⁸; Charles Parker⁹; David J. Kuter¹⁰; Susana Monroy¹¹; Jeeyoung Oh¹²; Bruce Ritchie¹³; John J. Ko¹⁴; Shangbin Liu¹⁴; Marianne T. Sweetser¹⁴; Eliane Sardh¹⁵; for the ENVISION Investigators

¹Wake Forest University/North Carolina Baptist Medical Center, Winston-Salem, NC, USA; ²University of Modena and Reggio Emilia, Modena, Italy; ³Centre Français des Porphyries, Paris, France; ⁴Hospital Clinic Barcelona, Barcelona, Spain; ⁵University of California, San Francisco, CA, USA; ⁶King's College Hospital, London, UK; ⁷Icahn School of Medicine at Mt. Sinai, New York, NY, USA; ⁸University of Texas Medical Branch, Galveston, TX, USA; ⁹University of Utah, Salt Lake City, UT, USA; ¹⁰Massachusetts General Hospital, Boston, MA, USA; ¹¹Instituto Nacional de Pediatría, Mexico City, Mexico; ¹²Konkuk University Medical Center, Seoul, South Korea; ¹³University of Alberta, Edmonton, Canada; ¹⁴Alnylam Pharmaceuticals, Cambridge, MA, USA; ¹⁵Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden

Presented at United European Gastroenterology Week, October 3–5, 2021.

© 2021 Alnylam Pharmaceuticals, Inc.

Disclosure of Conflicts of Interest for Herbert L. Bonkovsky, MD

I herewith declare the following paid or unpaid consultancies, business interests or sources of honoraria payments for the past three years, and anything else which could potentially be viewed as a conflict of interest:

- Grant support and financial support, paid to Wake Forest University School of Medicine, from Alnylam Pharmaceuticals, Gilead Sciences, and Mitsubishi Tanabe, NA
- Consulting fees from Alnylam Pharmaceuticals, Disc Medicine, Eiger Biopharma, Protagonist Therapeutics, and Recordati Rare Diseases

Introduction

3

- AHP is caused by hepatic heme biosynthesis defects leading to accumulation of neurotoxic heme intermediates, ALA and PBG, and/or porphyrins primarily in the liver.¹⁻³
 - Characterised by acute disabling neurovisceral attacks, which can become recurrent in some patients,^{4,5} and chronic symptoms, which diminish patients' functioning and QOL.^{4,6}
 - Hypertension, chronic kidney disease, and liver disease are common in patients with AHP.^{4,7-12}
- IV hemin is commonly used for treatment of acute attacks and for prophylaxis, but can result in acute (eg, phlebitis) and chronic (eg, iron overload, venous thrombosis/obliteration) complications.^{4,5}
- Givosiran is a subcutaneously administered RNA interference therapeutic that specifically targets ALAS1 mRNA in the liver to reduce ALA and PBG.¹³
 - Approved for treatment of AHP in adults in the United States and adults and adolescents ≥12 years old in the European Union.^{14,15}
- The 6-month DB period of ENVISION showed givosiran treatment was associated with reductions in AAR, ALA and PBG levels, hemin use, and daily pain scores versus placebo.¹³ Here we report 24-month interim data from the ENVISION 30-month OLE period.

AAR, annualised attack rate; AHP, acute hepatic porphyria; ALA, delta-aminolevulinic acid; ALAS1, delta-aminolevulinic acid synthase 1; DB, double-blind; IV, intravenous; mRNA, messenger RNA; OLE, open-label extension; PBG, porphobilinogen; QOL, quality of life.

1. Puy H, et al. *Am J Hum Genet.* 1997;60(6):1373-1383. 2. Balwani M, Desnick RJ. *Blood.* 2012;120(23):4496-4504. 3. Bissell DM, et al. *Am J Med.* 2015;128(3):313-317. 4. Gouya L, et al. *Hepatology.* 2020;71(5):1546-1558. 5. Pischik E, Kauppinen R. *Appl Clin Genet.* 2015;8:201-214. 6. Simon A, et al. *Patient.* 2018;11(5):527-537. 7. Bonkovsky HL, et al. *Am J Med.* 2014;127(12):1233-1241. 8. Pallet N, et al. *Kidney Int.* 2015;88:386-395. 9. Willandt B, et al. *JIMD Rep.* 2016;25:77-81. 10. Sardh E, et al. *J Inherit Metab Dis.* 2013;36(6):1063-1071. 11. Innala E, Andersson C. *J Intern Med.* 2011;269(5):538-545. 12. Andant C, et al. *J Hepatol.* 2000;32(6):933-939. 13. Balwani M, et al. *N Engl J Med.* 2020;382(24):2289-2301. 14. Givlaari [package insert]. Cambridge, MA: Alnylam Pharmaceuticals; 2020. 15. Givlaari [summary of product characteristics]. 2020. https://www.ema.europa.eu/en/documents/product-information/givlaari-epar-product-information en.pd.

Methods: ENVISION Study Design

^aEndpoints were evaluated in patients with genetically confirmed AIP (except where noted otherwise) at 6 months. ^bFor the OLE period, all endpoints were exploratory. ^cA protocol amendment increased the dose to 2.5 mg/kg monthly for all patients.

AAR, annualised attack rate; AHP, acute hepatic porphyria; AIP, acute intermittent porphyria; ALA, aminolevulinic acid; ALAS1, delta-aminolevulinic acid synthase 1; DB, double-blind; OLE, open-label extension; PBG, porphobilinogen; PCS, Physical Component Summary; PPEQ, Porphyria Patient Experience Questionnaire;

qM, every month; QoL, quality of life; SC, subcutaneous; SF-12, Short Form (12-item) Health Survey.

4

Results: Patient Demographics and Characteristics at Baseline

All patients completed the 6-month DB period, and all eligible patients (n=93) entered the 30-month OLE period

Demographic/Characteristic	Placebo–Givosiran Crossover (n=46)	Continuous Givosiran (n=48)	All Patients Who Received Givosiran (N=94)
Age at screening, y, median (range)	36 (20–60)	42 (19–65)	38 (19–65)
Female, n (%)	41 (89)	43 (90)	84 (89)
AIP with identified mutation, n (%)	43 (94)	46 (96)	89 (95)
Years since diagnosis, median (range)	6.5 (0.1–38.5)	7.0 (0.2–43.3)	6.6 (0.1–43.3)
Prior hemin prophylaxis, n (%)	18 (39)	20 (42)	38 (40)
Historical AAR, ^a median (range)	7.0 (0 ^b 46)	8.0 (4–34)	8.0 (0 ^b –46)
Chronic symptoms daily or most days between attacks, n (%)	26 (57)	23 (48)	49 (52)
Baseline urinary ALA, mmol/mol Cr, median (range)	16.4 (1.4–41.5)	16.4 (1.8–88.9)	16.4 (1.4–88.9)
Baseline urinary PBG, mmol/mol Cr, median (range)	39.3 (3.6–87.7)	39.6 (0.4–150.0)	39.6 (0.4–150.0)

^aComposite porphyria attacks requiring hospitalisation, an urgent health care visit, or IV hemin treatment at home.

^bOne patient in the placebo group was enrolled in the study but did not meet an inclusion criterion (did not have requisite number of attacks within 6 months before randomisation).

Reference ranges: ALA (ULN, 1.47 mmol/mol Cr); PBG (ULN, 0.137 mmol/mol/Cr)

AAR, annualised attack rate; AHP, acute hepatic porphyria; AIP, acute intermittent porphyria; ALA, aminolevulinic acid; Cr, creatinine; DB, double-blind; OLE, open-label extension; PBG, porphobilinogen.

5

Results: Urinary ALA and PBG Levels over Time

In the placebo-givosiran crossover and continuous givosiran groups, givosiran treatment led to sustained lowering of median ALA levels to near normal and to lowering of PBG levels by >75% through Month 24^a

^aOLE data for givosiran 1.25 mg/kg and 2.5 mg/kg groups are pooled. Reference ranges: ALA (ULN, 1.47 mmol/mol Cr); PBG (ULN, 0.137 mmol/mol/Cr)

6

AAR, annualised attack rate; ALA, aminolevulinic acid; ALAS1, delta-aminolevulinic acid synthase 1; DB, double-blind; Givo, givosiran; OLE, open-label extension; PBG, porphobilinogen; Pbo, placebo.

Results: AAR and Proportions of Attack-Free Patients

AAR in Placebo Crossover Patients

Proportion of Composite Attack-Free Patients by 3-Month Interval during DB and OLE Periods^c

^aDescriptive analysis. ^bPlacebo crossover patients receiving givosiran 2.5 mg/kg (n=29) or 1.25 mg/kg (n=17). ^cComposite attacks include porphyria attacks requiring hospitalisation, urgent health care visit, or intravenous hemin administration at home; 1 month = 28 days. ^dBaseline represents 6 months before randomisation.

AAR in Continuous Givosiran Patients

AAR, annualised attack rate; DB, double-blind; OLE, open-label extension.

Results: Hemin Use

The proportion of patients with no days of hemin use increased during the OLE period versus the DB period

Results: Quality of Life

With givosiran, patients experienced improvements in QOL, as reflected in SF-12 PCS scores and EQ-VAS scores

^aEstimates for the clinically meaningful difference are ≥2 to 5 points for SF-12 PCS, based on published data for other chronic diseases.^{1,2}

^bEstimates for the clinically meaningful difference are ≥7 to 8 points for EQ-VAS, based on published data for other chronic diseases.^{3,4}

DB, double-blind; EQ-VAS, EuroQol-visual analogue scale; Givo, givosiran; OLE, open-label extension; Pbo, placebo; PCS, Physical Component Summary;

QOL, quality of life; SF-12, Short Form (12-item) Health Survey.

9

1. Clement ND, et al. Knee Surg Sports Traumatol Arthrosc. 2014;22(8):1933-1939. 2. Parker SL, et al. J Neurosurg Spine. 2012;16(5):471-478.

3. Zanini A, et al. Respir Care. 2015;60(1):88-95. 4. Nolan CM, et al. Thorax. 2016;71(6):493-500.

Results: Patient-Reported Outcomes

From the DB period through the OLE period, PPEQ results showed further improvements across all domains, including patients who crossed over from placebo to givosiran

10 DB, double-blind; OLE, open-label extension; PPEQ, Porphyria Patient Experience Questionnaire.

Results: Adverse Events^a

≥1 Event, n (%) ^ь	Placebo–Givosiran Crossover (n=46)	Continuous Givosiran (n=48)	All Patients Who Received Givosiran (N=94)
AE	43 (94)	47 (98)	90 (96)
SAE ^c	13 (28)	15 (31)	28 (30)
Severe AE	14 (30)	13 (27)	27 (29)
AE leading to treatment discontinuation	2 (4)	1 (2)	3 (3)
AE leading to study withdrawal	2 (4)	1 (2)	3 (3)
Death	0	0	0

- The most common treatment-related AEs were injection-site reactions (29% [27/94] patients), nausea (20% [19/94]), and fatigue (13% [12/94])
- SAEs reported in ≥2% of patients included blood homocysteine increased, CKD, device breakage, pyrexia, and UTI (each occurred in 2 patients)
- Hepatic AEs were reported in 17 (18%) patients; all were mild to moderate in severity
- Renal AEs (mostly increased blood creatinine and/or decreased eGFR) were reported in 21 (22%) patients; none led to treatment discontinuation
 - Small decreases in eGFR observed early in therapy stabilized over Months 12 to 24

^aSafety data from first dose of givosiran to data cutoff date, June 24, 2020. ^bFor calculating exposure, 1 month = 30.44 days. ^cSAE of liver function test abnormal that led to treatment discontinuation during DB period was previously reported.¹

11

AE, adverse event; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; SAE, serious adverse event; UTI, urinary tract infection. 1. Balwani M, et al. *N Engl J Med.* 2020;382(24):2289-2301.

Conclusions

- The ENVISION 24-month interim analysis further confirms that long-term dosing with givosiran provides sustained and continuous benefit to patients with AHP.
- Long-term givosiran use demonstrated a durable response with efficacy across a wide range of clinical parameters during the OLE period.
- 83% and 76% of patients in the continuous givosiran and placebo crossover groups, respectively, continued to be attack-free during Months 21–24.
- The analysis showed a sustained reduction in AAR, ALA and PBG levels, and hemin use and further improvements in physical functioning and QOL.
- The safety profile of givosiran remained acceptable.