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Transformative Advancements in Conjugate-Based Delivery
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Addressing the Delivery Challenge

Mechanisms for siRNA Delivery to Liver

0 siRNA

Patisiran

Current Clinical
siRNAs

Lipid Nanoparticles (LNPs) GalNAc-sIRNA Conjugates

Single chemical entity
= Tri-GalNAc ligand conjugated to
sense strand of extensively
modified siRNA

Targeted delivery to liver
Subcutaneous (SC) administration

siRNA (limited modifications)

in a multi-component lipid
formulation (LNP; ~85 nm)
Targeted delivery to liver
Intravenous (IV) administration

< Complementary Approaches for Efficient siRNA Delivery to Liver >




Investigational RNAIi Therapeutics for CNS and Ocular Diseases

Expanding Alnylam opportunities beyond liver

Devastating diseases with enormous burden and unmet need

/ Alzheimer’s disease ¢ Huntington’s disease\

« Amyotrophic lateral
sclerosis (ALS)

 Cerebral amyloid
angiopathy

* Frontotemporal

\ dementia

* Multi-system atrophy
« Parkinson’s disease
» Spinocerebellar ataxia

)

Number of genetically validated targets known but few disease modifying therapies for these devastating or

life threatening disorders.

O

o

/- AMD, dry

« AMD, wet

* Birdshot
chorioretinopathy

* Dominant retinitis
pigmentosa 4

* Fuch’s dystrophy
* hATTR amyloidosis

* Hereditary and
sporadic glaucoma

\

RNAI therapeutics directed to disease-causing, CNS- or ocular-expressed genes represent a potential
opportunity to address diseases with some of the greatest unmet need.
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Intracerebroventricular (ICV) Delivery of CNS Optimized siRNA Conjugates

Dose response and duration in mouse ICV

siRNA targeting SOD1
* Dose response study: single siRNA conjugate doses of 25ug, 50ug, 100ug, 150ug, 200ug and 300ug

* Duration: time points through 6 months with 50ug, 150ug and 300ug

Dose response

1& Day14

Day O 30 90 180

} ! b

Tissue
collection

Tissues:
Spinal cord, left and right hemispheres, cerebellum and brain stem

Assays:
MRNA by qPCR and tissue siRNA levels



Dose Dependent Silencing Throughout Mouse Brain

Single dose and dose response in mouse ICV
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Concentration (ng/g)

Robust and Sustained Activity of siRNA in the Mouse CNS

Single dose and duration in mouse ICV
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Strong PK/PD Relationship in Mouse Brain
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Intrathecal (IT) Delivery of CNS Optimized siRNA Conjugates

Single dose and dose response in rat

siRNAs targeting SOD1 in single dose or dose response

+ Single siRNA conjugate doses of 0.9 mg, 0.3 mg, 0.07 mg
* Multidose arm- 0.3 mg monthly x 5

« Time points through 6 months for SOD1

___________________________________________________________________________________________________________________ g NN |
Day 0 7 28 42 56 70 84 98 126 168

} § ) : b b Voo

Tissue
collection

Tissues: Spinal cord: Lumbar, thoracic and cervical
Brain: prefrontal cortex, cerebellum and remaining brain
Fluids: CSF and plasma

Assays: mRNA, tissue siRNA levels, Histology

11



Robust and Durable Silencing Demonstrated Following a Single IT Dose

Silencing of SOD1 following a single or multiple IT doses
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Robust Silencing Throughout the Rat Brain

Intrathecal delivery of siRNA provides durable knockdown throughout CNS in rat
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Consistent lowering across animals in most regions of the brain




PKPD Model Can Describe Exposure-Pharmacology Relationship For Single
And Repeat Doses in Rats
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Drug is absorbed very rapidly from CSF (majority with-in first 24 hours) and then cleared very slowly
from tissue with siRNA half-life ~ 4 months (frontal cortex)

* Dose dependent exposure; multidose exposure on monthly schedule is additive

« Similar behavior in other tissue groups

» Integrating an indirect PD model via a stand-in “RISC” PK compartment allows the PK model to describe

MRNA reduction observed in same study
14 CONFIDENTIAL



Rat CNS distribution of radiolabeled siRNAs

0-1.5 (dynamic), 4, 24 and 48 h

Whole-organ and blood gamma counting, and
immunohistochemistry for siRNA

( — )
IT drug . ( [""Indium]-DTPA-conjugated siRND
delivery Brain &
w } Dose Formulation m
O —
/ Blood, lymph Unmodified siRNA
Lumbar
puncture Systemic tissues
\_ J
( )
Study Groups
Three groups: o~
Lumbar IT catheter ) Dosing (per animal)
N = 2 animals/siRNA
3 toolkit siRNAs
. I\ Y,
( )
SPECT/CT Imaging Sampling Radiological quantification

"n whole-body uptake per timepoint,
and uptake by 13 brain regions

J

15



'gZ/AInyIam

Pharmacokinetics of IT-dosed 1"In-siRNA in rodents

Co-registered SPECT/CT images facilitate anatomical orientation
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Pharmacokinetics of IT-dosed 11In-siRNA in rodents

SPECT reveals rapid movement through CSF to brain (<1h) followed by drainage to systemic circulation
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78.8 uCi, IT

HO-0.25 HO0.25-0.5 HO.5-1 H1-1.5 H24 H48

IERRE

7.5 %ID/g
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17 MIP: Maximum intensity projections derived from projecting the voxel with the highest value on every view throughout the volume onto a 2D image.



Rat distribution of intrathecally administered siRNA

» Summary of SPECT/CT with "In-siRNA: Rat intrathecal flow path

— Follows primary CSF flow routes up the spine and
around the brain.

— Clears CSF fast due to systemic drainage. CSF

turnover (9%/day in rat) is primary clearance route.
— Small fraction distributed to brain: 2-3% of injected dose
at 48 hours. o S
-
° - Brain
— Rapid and substantial peripheral tissue distribution 8 - CSF/Spine
(highest concentration in liver) £ - Liver
:\?: Kidney
— Consistency with “cold” studies suggests radiolabel is —n
stable, accurately reflecting distribution of duplex. 36 43

18 lliff et al 2013 J Clin Inv; 3D Rat Anatomy, Biosphera



APP Targeting for Autosomal Dominant Alzheimer’s Disease (ADAD)

ADAD TARGET IDENTIFICATION
—

Patients develop rapidly progressive Alzheimer’s-type » All ADAD causative genes identified to date (APP, PSEN1, PSEN2)

dementia regulate APP protein metabolism by increasing production of amyloid

products, including Al342

Healthy brain Alzheimer’s disease brain . .

Bl e e + Autosomal dominant, nearly 100% penetrant genetic syndrome

ooy
information
processing

The cortex shrivels
up, damaging areas
involved in thinking,
planning and
remembering

i THERAPEUTIC HYPOTHESIS

) filled with —
cerebrospinal
fluid grow

larger » AR42 is made in neurons and aggregates in the intracellular and
extracellular brain parenchyma

JLx\

* RNAi-mediated knockdown of APP transcript in neurons will lower
Hippocampus production of AR42, halting aggregation and plaque formation

shrinks severely

Hippocampus:
Critical to the
formation of new
memories

Source: Alzheimer’s Association

BURDEN OPPORTUNITY
—
« ~50,000 affected globally  Application of Alnylam’s CNS platform to reduce parenchymal APP-
. Mean age of onset 44 years with rapid progression derived amyloid in ADAD with no existing disease-modifying treatment
over 6-8 years + Potential for expansion into sporadic Alzheimer’s disease

19



Highly Durable Amyloid Precursor Protein (APP) Knockdown in NHP
Single Intrathecal Dose of ALN-APP Supports Bi-Annual or Less Frequent Regimen

100
CSF sAPPa and sAPPR Protein Knockdown
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* Progress of RNAI in Ocular
« Summary

21
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Investigational RNAIi Therapeutics for Ocular Diseases

Expanding Alnylam o

Devastating diseases with enormous burden and unmet need

pportunities beyond liver

O

\_

* AMD, dry
* AMD, wet
* Birdshot chorioretinopathy

 Dominant retinitis
pigmentosa 4

* Fuch’s dystrophy
* hAATTR amyloidosis

 Hereditary and sporadic
glaucoma

~

/

Number of genetically validated targets known but few disease modifying therapies for these devastating or

life-threatening disorders.

RNAI therapeutics directed to disease-causing, Ocular-expressed genes represent a potential opportunity to

address diseases with some of the greatest unmet need.



Robust and Durable Activity in 6-month NHP Studies

TTR protein analysis in Aqueous Humor TTR mRNA analysis, Day 168
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Knock Down of TTR Protein at 3 Month Demonstrated at 30ug

Sustained Protein and Message Knockdown Achieved at 100ug
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Consistent Extra-hepatic Silencing Observed Across Pre-clinical Species
Successful delivery of siRNA conjugate to the CNS and Eye

O

» Durable silencing of target mMRNA observed

across the CNS of mouse, rat and NHP. - TTR silencing demonstrated in rodents and

 siRNA uptake observed in all CNS tissues NHP
examined with drug levels in the ng/g to ng/g

« Target silencing is specific and found to be
range

generally well tolerated

 |In mouse, rat and NHP studies, central
administration of the novel siRNA conjugates
was well tolerated.

» Target knockdown in NHP seen for 168 days
following a single IVT dose of siRNA

» Equivalent silencing demonstrated for mRNA

* Properties of the siRNAs in preclinical models and protein across the eye

suggest a major advancement of RNAi in CNS
space

24
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To those who say “impossible, impractical,
unrealistic,” we say:

CHALLENGE ACCEPTED
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