Results from the Ongoing Phase 2 Open-Label Extension Study of Lumasiran, an Investigational RNAi Therapeutic, in Patients with Primary Hyperoxaluria Type 1 (PH1) <u>Yaacov Frishberg</u>¹, Sally Hulton², Pierre Cochat³, Jaap Groothoff⁴, Daniella Magen⁵, Jerome Harambat⁶, Gesa Schalk⁷, William van't Hoff⁸, Dayna LeSueur⁹, Tracy L. McGregor⁹, Georges Deschênes¹⁰ ¹Shaare Zedek Medical Center, Pediatric Nephrology, Jerusalem, Israel; ²Birmingham Children's Hospital, Pediatric Nephrology, Birmingham, United Kingdom; ³Université Claude Bernard, Centre de Référence des Maladies Rares Néphrogones, Lyon, France; ⁴Amsterdam UMC, Pediatric Nephrology, Amsterdam, The Netherlands; ⁵Rambam Health Care Campus, Pediatric Nephrology, Haifa, Israel; ⁶Bordeaux University Hospital, Pediatric Nephrology, Bordeaux, France; ⁷University Hospital Bonn, Pediatric Nephrology, Bonn, Germany; ⁸Great Ormond Street Hospital, Pediatric Nephrology, London, United Kingdom; ⁹Alnylam Pharmaceuticals, Cambridge MA, United States; ¹⁰Hospital Robert Debre, Pediatric Nephrology, Paris, France # **Disclosures** Y Frishberg: consultancy fees from Alnylam Pharmaceuticals and membership of the SRC **S Hulton:** travel expenses to participate in clinical research meetings and consultancy fees paid to Birmingham Children's Hospital Renal Research Fund from Alnylam Pharmaceuticals **P Cochat:** consultancy fees and invitations to scientific meetings from Alnylam Pharmaceuticals J Groothoff: reports consultancy fees from Alnylam Pharmaceuticals and research grants from Alnylam Pharmaceuticals, Dicerna Pharmaceuticals, and UniQure Pharmaceuticals **D Magen:** research funding, consultancy fees, and non-financial support from Alnylam Pharmaceuticals J Harambat: nothing to disclose G Schalk: nothing to disclose W van't Hoff: travel expenses to participate in clinical research meetings and financial recompense for clinical trial participation which was paid to his institute **D LeSueur, T McGregor:** employees of Alnylam Pharmaceuticals and D LeSueur, T McGregor: holds shares in Alnylam Pharmaceuticals **G Deschênes:** consultancy fees from Alnylam Pharmaceuticals, Dicerna Pharmaceuticals, and Biocodex, and was a PI for research funded by OxThera # **Background and Rationale** #### **Primary Hyperoxaluria Type 1 (PH1)** - PH1 is caused by deficiency in hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT) - Hepatic overproduction of oxalate leads to recurrent kidney stones, nephrocalcinosis, progressive renal failure, and multiorgan damage from systemic oxalosis (Figure 1) - Diagnosed prevalence: ~1 to 3 cases per 1 million population, with higher prevalence in parts of the Middle East and North Africa^{1,2} - Age and severity of symptoms at diagnosis highly variable^{1,3} - No therapies currently approved for PH1 treatment #### Figure 1. Oxalate Synthesis in PH1 - AGT in liver peroxisome metabolizes glyoxylate to glycine - 2 When AGT is deficient, glyoxylate cannot be metabolized to glycine - 3 Glyoxylate is instead converted to oxalate - 4 Oxalate initially deposits and accumulates in the kidneys # **Background and Rationale Continued** ### Lumasiran (ALN-GO1)¹ - Subcutaneously administered investigational RNA interference (RNAi) therapeutic - Harnesses natural RNAi mechanism - Decreases hepatic oxalate production by targeting glycolate oxidase (Figure 2) - In the Phase 1/2 study in patients with PH1 (NCT02706886), lumasiran demonstrated clinically significant and sustained reductions in urinary and plasma oxalate to normal or near-normal levels, with an acceptable safety profile² **Figure 2. Lumasiran Therapeutic Hypothesis** AGT, alanine:glyoxylate aminotransferase; GO, glycolate oxidase; GR glyoxylate reductase/hydroxypyruvate reductase; LDH, lactate dehydrogenase; PH1, primary hyperoxaluria type 1; RNAi, RNA interference # **Methods** # Patients Completing the Phase 1/2 Study Were Eligible to Enroll in the Phase 2 Open-Label Extension (OLE) Study (NCT03350451) - All 20 patients enrolled in Phase 1/2 completed the study and enrolled in the OLE - Data presented here are for all patients dosed in the Phase 2 OLE, as of January 30, 2020 - Dosing for a median of 15 (range: 11–22) months - Since the data cut, all patients have been transitioned to 3.0 mg/kg q3M Inclusion criteria: Ages 6–64 years; eGFR >45 mL/min/1.73m²; urinary oxalate excretion >0.70 mmol/24 h/1.73m² #### **Oxalate Assay** All data presented here use a validated liquid chromatography tandem mass spectrometry (LC-MS/MS) assay developed for Phase 3 studies. Previous presentations of the Phase 1/2 and Phase 2 OLE studies used an enzymatic assay to measure urinary oxalate. Pearson correlation coefficient for the two methods was 0.925 Table 1. Patient Demographics and Disease Characteristics (N=20)^a | Characteristic | | |--|-------------------| | Mean age, years (range) | 16 (7–44) | | Age <18 years | 75% | | Female | 65% | | Mean weight, kg (range) | 50.0 (21.3–112.5) | | Mean eGFR, mL/min/1.73m ² (range) | 77 (42–131) | | Mean 24-hour urinary oxalate excretion, mmol/24 hr/1.73m ² (range) ^a | 2.24 (0.94–5.18) | | Mean 24-hour urinary oxalate:creatinine ratio, mmol/mmol (range) ^a | 0.28 (0.11–0.56) | #### **Urinary Oxalate Content in 24-Hour Urinary Collections** - Patients experienced sustained reductions in urinary oxalate excretion, with similar responses between dosage regimens (Figure 3) - Mean maximal reduction in urinary oxalate of 74.5% (range: 35.7–88.3%) relative to Phase 1/2 baseline (N=17)^a - 17/18^a (94.4%) patients achieved normal or nearnormal (≤1.5 × ULN)^b levels of urinary oxalate Figure 3. Mean (± SEM) of Actual 24-Hour Urinary Oxalate Values (Corrected for BSA) 4.0 24-h urinary oxalate corrected for BSA (mmol/24 hr/1.73m²) 3.5 3.0 2.5 2.0 1.5 1.0-ULN 0.5 0.0 BL D-1 M12 M3 M6 M9 M18 Visit Initial dose of lumasiran in study ■ 1.0 mg/kg qM or 3.0 mg/kg q3M (N=13) 3.0 mg/kg qM (N=7) **★** Total (N=20) No. of patients: 5 ■ N= N= 15 15 12 19 13 * N= ^aN reflects number of patients with samples meeting the validity criteria, including sufficient creatinine content. ^bULN=0.514 mmol/24 hr/1.73m²; 1.5 × ULN=0.77 mmol/24 hr/1.73m² BL, baseline; BSA, body surface area; D, day; M, month; q3M, every 3 months; qM, every month; SEM, standard error of the mean; ULN, upper limit of normal #### **Urinary Oxalate: Creatinine Ratio in 24-Hour Urinary Collections** - Patients experienced sustained reductions in urinary oxalate:creatinine ratio, with similar responses between dosage regimens (Figure 4) - Mean maximal reduction in urinary oxalate:creatinine ratio of 77.5% (range: 55.3–95.8%) (N=20) #### **Additional Measures** - Plasma oxalate levels decreased (mean maximal reduction 55.2%, N=19) - Mean eGFR values were stable over time #### **Safety and Tolerability** - Continued dosing with lumasiran was generally well tolerated in patients with PH1 - Adverse events (AEs) were reported in 19/20 (95.0%) patients; all were mild or moderate in severity and the majority were assessed as unrelated to study drug - The most common drug-related AEs reported were mild, transient injection-site reactions - No discontinuations or drug-related serious AEs were reported - No clinically significant laboratory changes were reported - No AEs of kidney stones were reported Table 2. Post hoc Analysis Conducted Based on Data Collected for Renal Stone Adverse Events^a | | Patients Reporting >1 Renal Stone | Total Number
of Renal Stones | Duration of Follow-Up
(patient-years) | |---|-----------------------------------|---------------------------------|--| | Historical (prior 12 months) ^b | 6/20 | 9 | 20 | | Phase 1/2 Part B | 4/20 | 7 | 7.8 ^c | | Phase 2 OLE | 0/20 | 0 | 26.4 ^d | ^aRenal stones not collected as an efficacy endpoint; any renal stone meeting AE definition is reported and recorded as an AE. Renal stones were identified in AE listings by medical review. ^bPatients reported number of renal stones in the 12 months prior to enrollment in the Phase 1/2 Study. ^cFrom first dose to last dose + 84 days. ^dFrom first dose to data cut-off: January 30, 2020. Interval between Phase 1/2 Part B and Phase 2 OLE not represented in these data # **Conclusions** - During this period of the phase 2 OLE study, lumasiran continues to demonstrate an acceptable safety profile with no discontinuations from study treatment or drug-related serious adverse events - Continued therapy with lumasiran maintained reduction of urinary oxalate to levels near or below the upper limit of normal - The most common drug-related AEs reported were mild, transient injection-site reactions - No adverse events of kidney stones were reported in this OLE period - These data provide long-term efficacy and safety with data for up to 22 months of exposure to lumasiran #### **Acknowledgments** - This study was sponsored by Alnylam Pharmaceuticals - Editorial assistance provided by Colette Szarka of Adelphi Communications Ltd, Macclesfield, UK was funded by Alnylam Pharmaceuticals in accordance with Good Publication Practice (GPP3) guidelines