The ADME of siRNA GalNAc Conjugates

Chris MacLauchlin, PhD

September 27, 2020

nylam*

© 2020 Alnylam Pharmaceuticals, Inc.

Presentation Outline

- GalNAc Absorption/PK
- GalNAc Distribution
- GalNAc Metabolism
- GalNAc Excretion
- GalNAc DDI profiles
- GalNAc PK/PD insights

Innovation in siRNA to Target Tissues

3

GalNAc-siRNA for Targeted Delivery to Liver

Asialoglycoprotein Receptor (ASGPR)

- Highly expressed on hepatocytes
- High capacity receptor
- Conserved across species

Hepatocyte specific ligand

- Trivalent GalNAc conjugated to sense strand
- High affinity and specificity to ASGPR

In Vivo Fate of GalNAc-siRNA after SC Administration

Pharmacokinetics: Transient Plasma Exposure Due to Rapid Liver Uptake

Plasma PK Parameters Across Species

Plasma PK parameter	Rat	Monkey	Human	
$C_{max}^{1}[(\mu g/mL)/(mg/kg)])$	0.130	0.286	0.284	
AUC _{last} 1 [(hr*µg/mL)/(mg/kg)])	0.373	1.31	2.95	
T _{max} (hr)	1.0	1.8	4.1	
T _{1/2} (hr)	0.9	1.9	4.8	

¹ Dose Normalized. Data from vutrisiran

Plasma Exposure Considerably Greater in the Absence of Liver-Targeted Delivery

- Low plasma exposure with short half-life due to targeted rapid liver uptake
- Similar plasma PK conserved across species, scaled by allometry

Rat and Monkey PK after IV infusion and SC

SC administration results in a slow absorption from the SC injection site and facilitates efficient hepatic drug uptake without saturation of the ASGPR

7

Liver PK in Rat and Monkey Shows Preferential Distribution

Dramatic difference in plasma PK vs. liver PK

Rat Radiolabeled ADME Study Conducted with Three GalNAc-siRNA Conjugates

Rat Radiolabeled ADME Study Design

	N (sex)	Sample Collection	Purpose
Intact Rat	4 (M)	Blood, Urine, Feces, Carcasses	Urinary/Fecal Excretion, Mass-Balance, Met ID
Intact Rat	12 (M)	Blood, Carcasses for QWBA	Tissue-Distribution, PK, Met ID
BDC Rat	6 (M)	Blood, Urine, Bile, Feces, Carcasses	Biliary Excretion, Met ID

QWBA=Quantitative whole-body autoradiography BDC=Bile-duct cannulated (7 days only)

Radiolabeled ADME Study Conducted with Three Conjugates in Intact Rats

 $\cdot 2$ Alnylam

	Conjugate-A	Conjugate-B	Conjugate-C
% of Dose Excreted	81	76	82
% of Dose in Carcass	3	3	1
Total % of dose Recovered	84	79	83

✓Alnylam Biodistribution Studies Confirm On-Target Delivery Conjugate-A (40µm thick)

0.5hr 2hr 4hr 96hr 336hr 1344hr

- Rapid distribution to the liver with t_{max} 4-6hr
- Few other organs show significant levels of radioactivity.

How Do GalNAc-siRNAs Get Metabolized?

- Exo- and endonucleases are ubiquitously distributed in both plasma and tissues **Species difference**
- Much higher cross species similarity compared to conventional drug metabolizing enzymes
 Sense Strand

Anti-sense strand

Metabolites from 3' -end antisense strand are typically active with comparable potency

13

14

Metabolite Profiles

Metabolism of 3 H-labeled (\bigcirc) siRNA in rats

5' <u>Antisense Strand</u> 3'	
	M15: AS(N-1)3' (pl, urine, bile)
©@@@UOUUUU@@@U	M11 (bile)
UOUOUOQQQQQQQQUU	M14 (urine, bile)
AGAGAGOUOUOUG G	M13 (bile)
	M10 (bile)
UAAGAUGAGACAGOU	M8 (bile)

• M15: AS(N-1)3' metabolite is the major metabolite in all matrices

Sense Strand Metabolism

- GalNAc moieties are quickly cleaved after uptake into hepatocytes
- The linkers are metabolized by hydrolysis of the amide bonds

Excretion: Minimal Renal Elimination

Species	Conjugate-A	Conjugate-B	Conjugate-A	
Rat	15-22% (58% total radioactivity)	11% (53% total radioactivity)	9% (68% total radioactivity)	
Monkey	1%	19%	11-24%	
Human	6 - 32%	3 – 17%	10 - 25%	

- Renal elimination across compounds is low (<25%)
- Similar data across species

Biliary Excretion

	Conjugate-A		Conjugate-B		Conjugate-C	
	% of Radioactivity Dose Recovered					
	Bile	Feces	Bile	Feces	Bile	Feces
Intact Rat		14		15		7
BDC Rat	27		24		17	

- Total radioactivity recovered in feces (intact rat) was lower than the total radioactivity excreted in bile (BDC rat), suggesting reabsorption of radioactivity via enterohepatic recycling
- Mostly full length and AS(N-1)3' metabolite found in the bile

Biliary Excretion (Conjugate-A)

- Classical double peak observed (enterohepatic recycling)
- No Conjugate-A or AS(N-1)3' metabolite detected in plasma
- Full length and AS(N-1)3' metabolite are further cleaved in the GI tract to shortmers, and get reabsorbed

GalNAc-siRNAs Co-localize With Lysosomes

Mouse Hepatocytes (Live cells)

- Free uptake (image taken 4 hours post-dose)
- Lysosomes (Lysopaint)
- siRNA (AD-326763, 10 nM)
- Knockdown not seen until 6 hours

DDI Strategy at Alnylam

DDI DDI Possible Unlikely Limited Data Phys-Chem Properties Regulatory Expectations Metabolically Stable, administration route and targeted First in Class distribution

- Mechanistically siRNA DDIs seem unlikely
- Given the limited amount of data and unknown regulatory expectations a traditional approach to DDI evaluation was taken
- Retrospective analysis of the data has allowed a shift in amount of DDI data needed (data has been published: Ramsden D et al., DMD 2019)

Drug-Drug Interaction Potential: Summary

GalNAc- CYP		CYP inhibitor			Transporter	Transporter
siRNA	substrate	Direct	Time dependent	inducer	substrate	inhibitor
cemdisiran	х	X (CYP2B6 = 583 μM, CYP2C8 = 224 μM) [clinical] = 0.048 μM	Х	X Not evaluated		Not evaluated
HBV01	х	Х	Х	X Not evaluated		Not evaluated
vutrisiran	х	Х	Х	Not evaluated		ed
AAT01	х	Х	Х	Not evaluated		
fitusiran	х	X (CYP2C8 = 56 μM) [clinical] = 0.0092 μM	Not evaluated	х	х	х
givosiran	Not evaluated	Х	х	х	х	X (P-gp = 4.2 μM) [clinical] = 0.02 μM
revusiran	х	Х	Not evaluat	ed X X		Х
lumasiran	х	X (CYP2C8 = 416 μM) [clinical] = 0.061 μM	Х	Not evaluated		ed
inclisiran	Not evaluated	х	х	х	х	х
AGT01	Not evaluated	Х	Х	Not evaluated		
AAT02	Not evaluated	х	Х	Not evaluated		
HBV02	Not evaluated	Х	Х	Not evaluated		

Major CYP isoforms (CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 3A4/5) Major transporters (P-gp, BCRP, BSEP, MATE1, MATE2-K, OATP1B1, OATP1B3, OAT1, OAT3, OCT1 and OCT2)

GalNAc-siRNAs are not:

- Substrates of major CYPs or transporters
- Inducers of drug metabolizing enzymes
- Likely to cause clinically meaningful inhibition of CYPs or transporters

Plasma PK, Liver PK, RISC PK and PD in Mice

Cross Platform PK/PD Insights

(8 Conjugates)

Monkey and rat liver exposure is similar across platform

Human plasma exposure is similar across platform

$\cdot \!\!\! \mathcal{Y}$ Alnylam

ADME Summary of GalNAc-siRNAs

Acknowledgments

Jing-Tao Wu Saeho Chong Yuanxin Xu **Diane Ramsden Jing Li** Ju Liu **Xiumin Liu Robin McDougall** Jeff Kurz **Xuemei Zhang Chris Tran** Valerie Clausen **Kirk Brown**

Chris Brown Martin Maier Ivan Zlatev Varun Goel Pete Smith

Alnylam Early Development Group

Alnylam RNAi Platform Team

cmaclauchlin@alnylam.com

To those who say "impossible, impractical, unrealistic," we say:

CHALLENGE ACCEPTED