ALN-COV: An Investigational RNAi Therapeutic for COVID-19

Akin Akinc, PhD

The Oligonucleotide Therapeutic Society Meeting, September 27-30, 2020

Disclosures

• Employee of Alnylam Pharmaceuticals

ALN-COV, an Investigational RNAi Therapeutic for COVID-19

Sources: Song et al., Viruses, 2019; Jiang et al., Emerging Microbes and Infections, 2012; The Economist

Provides a unique and distinct antiviral strategy for the treatment of COVID-19

- RNAi mechanism of action results in degradation of SARS-CoV-2 viral RNA genome
- Direct administration of ALN-COV to lungs, the key site of viral replication and disease manifestations
 - Early delivery of a potent antiviral agent directly to the site of replication has the potential to prevent progression to severe
 pulmonary disease and decrease time to clinical recovery
- Initial development plan focused on the treatment of patients with mild to moderate COVID-19
 - Potential for development in targeted prophylactic setting
- **IND filing planned for around year-end 2020**

Q

2 Th

Chemistry Advances Enable Robust Tissue Distribution with Potent and Durable Gene Knockdown in Lung Surrogate siRNA targeting endogenous lung target (Sod1)

 $\cdot 2$ Alnylam

(A) PBS-treated animal on Day 10 post dose. (B)10 mg/kg *Sod1* siRNA on Day 10 post dose. siRNA is magenta. Blue is hematoxylin counterstain.

Development Candidate Selection

Targeting SARS-CoV-2 genome

350 candidate sequences fully conserved in SARS-CoV and SARS-CoV-2 identified by Alnylam; Alnylam team synthesized and tested in vitro using a reporter system

100 top candidates transferred to Vir for testing in the in vitro SARS-CoV-2 infectious system using three concentrations and two different readouts

EC₅₀ evaluation of top 24 sequences against infectious SARS-CoV-2

Narrowed down to 5 sequences based on potency, specificity, sequence conservation, and manufacturability

SARS-CoV-2 Genome Coverage and Activity

~100 siRNAs with ≥80% KD at 10 nM in two luciferase reporter vectors tested

- Graph represents the knockdown (KD) values of each individual duplex.
- Top leads (in black) were selected from duplexes that had ≥80% KD in both luciferase reporter vectors tested

SARS-CoV-2 Live Virus Assay

SARS-CoV-2 nucleoprotein

Potent siRNAs Identified Spanning SARS-CoV-2 Genome

Top 24 siRNAs from ~100 screened in live virus in vitro assay

RT-qPCR

In-cell ELISA

 Screening of 100 siRNAs against live SARS-CoV2 infection led to choosing of 24 candidates for further assessment

8 RT-qPCR: Reverse Transcription Quantitative Polymerase Chain Reaction; ELISA: Enzyme-Linked Immunosorbent Assay; siRNA: small interfering RNA.

ALN-COV Comprises Two siRNAs from Top 5 Candidates

IFA

(red stain)

Two siRNAs utilized to mitigate risk of viral escape

siRNA	EC ₅₀ EC ₉₅ (pM; PCR)	EC ₅₀ EC ₉₅ (pM; IFA)	Genome Reactivity* (0 mm)	Genome Reactivity* (1 mm)
siRNA 1	42 1183	66 763	99.91%	100.00%
siRNA 2	86 702	118 608	99.89%	99.98%

*N=4386 genomes analyzed

Study Design: Efficacy of ALN-COV in SARS-CoV-2 Hamster Model

Hamster model supports SARS-CoV-2 infection

- Extensive homology to human *ACE2* receptor; resembles the manifestations of upper and lower respiratory tract infection in humans
- Rapid loss of body weight gain provides key readout in addition viral titers
 - mock-infected

ALN-COV Hamster study Design

Target Indication for the Treatment of Mild to Moderate COVID-19

Intervention early during viral response phase of disease

Current Clinical Development Plan

Treatment of adult and adolescent patients with mild to moderate COVID-19

Phase 1 Study Healthy Volunteers N~40

- Objective: Establish safety and select dose of ALN-COV
- **Study Design:** Randomized, single-blind, placebo-controlled, ascending dose study in healthy volunteers (HVs)
- **Dose Regimen:** Once daily x 2 days inhalation administration via nebulizer
- Randomization: 3:1, ALN-COV : placebo
- Endpoints: Safety, tolerability, and pharmacokinetics (PK)

Phase 2/3 Study Mild to Moderate COVID-19 N~600

- **Objective**: Evaluate efficacy and safety of ALN-COV
- **Study Design:** Randomized, double-blind, placebo-controlled study in patients with mild to moderate COVID-19 with risk factors for severe disease
- **Dose Regimen:** Once daily x 2 days inhalation administration via nebulizer
- Randomization: 1:1, ALN-COV+SOC : placebo+SOC
- Endpoints: Progression to severe pulmonary disease, hospitalization, mechanical ventilation, symptom resolution, disease severity, mortality, viral parameters, safety, and PK

