Evaluation of Patisiran with Concomitant or Prior Use of Transthyretin Stabilizers Hollis Lin, Madeline Merkel, Cecilia Hale, Jing L. Marantz Alnylam Pharmaceuticals, Cambridge, MA, USA Hollis Lin reports research support funded by Alnylam Pharmaceuticals, and employment and shareholdings for Alnylam Pharmaceuticals ## **Background** ### Hereditary Transthyretin-Mediated (hATTR) Amyloidosis, Also Known As ATTRv Amyloidosis - Rare, inherited and progressively debilitating disease caused by a variant in the TTR gene^{1–5} - The majority of patients develop a mixed phenotype of both polyneuropathy and cardiomyopathy^{6–9} - There is growing interest to understand the potential position of each therapy within the therapeutic landscape to optimize care for patients with hATTR amyloidosis #### **Analysis Objectives** - Evaluate safety and pharmacodynamics of patisiran alone or with a concomitant TTR stabilizer (diflunisal or tafamidis) from the Phase 2 OLE study - Evaluate safety and efficacy of patisiran in patients with prior TTR stabilizer use from the Phase 3 APOLLO study ### hATTR Amyloidosis Disease Cascade and Currently Available Pharmacologic Therapies⁵ ^{1.} Hanna. Curr Heart Fail Rep 2014;11:50–7; 2. Mohty et al. Arch Cardiovasc Dis 2013;106:528–40; 3. Adams et al. Neurology 2015;85:675–82; 4. Damy et al. J Cardiovasc Transl Res 2015;8:117–27; 5. Hawkins et al. Ann Med 2015;47:625–38; 6. Rapezzi et al. Eur Heart J 2013;34:520–8; 7. Coelho et al. Curr Med Res Opin 2013;29:63–76; 8. Adams et al. N Engl J Med 2018;379:11–21; 9. Benson et al. N Engl J Med 2018;379:22–31 ## Patisiran Phase 2 OLE Overview and Baseline Characteristics by Concomitant TTR Stabilizer Use - The Phase 2 OLE (NCT01961921) was a 24-month multicenter, international OLE of the Phase 2 study of patisiran treatment - Primary objective of the Phase 2 OLE study was to evaluate safety and tolerability of long-term patisiran dosing; assessment of pharmacodynamics effect (serum TTR reduction) was a secondary objective of the study - Patients were permitted to receive concomitant tafamidis or diflunisal during the study if the patient started either treatment prior to study entry | Baseline Characteristics | Patisiran Alone
(n=7) | Patisiran and Tafamidis
(n=13) | Patisiran and Diflunisal
(n=7) | |---|--------------------------|-----------------------------------|-----------------------------------| | Median age, years (range) | 55 (40–75) | 45 (29–77) | 69 (63–75) | | Male, n (%) | 4 (57.1) | 9 (69.2) | 5 (71.4) | | Median years since hATTR amyloidosis diagnosis, (range) | 2.0 (1–4) | 3.1 (2–8) | 2.1 (1–3) | | V30M genotype, n (%) | 4 (57.1) | 9 (69.2) | 7 (100.0) | | FAP stage ^a , n (%) | | | | | 1 | 6 (85.7) | 11 (84.6) | 7 (100.0) | | 2 | 1 (14.3) | 2 (15.4) | 0 | | Cardiac subpopulation ^b , n (%) | 1 (14.3) | 5 (38.5) | 5 (71.4) | ^aNo patients were recorded to have FAP stage 3. ^bDefined as baseline left ventricular wall thickness ≥13 mm, normotensive or with hypertension that is well controlled, and no aortic valve disease history ## Patisiran Phase 2 OLE Safety Summary and Exposure by Concomitant TTR Stabilizer Use Status Overall, safety in each group **appears to be consistent with the reported safety profiles** of each monotherapy as reported **in their respective pivotal clinical studies**^{1–4} | | Patisiran Alone | Patisiran and
Tafamidis | Patisiran and
Diflunisal | | | |----------------------------------|-----------------------|----------------------------|-----------------------------|--|--| | | (n=7) | (n=13) | (n=7) | | | | Safety Event, n (%) | | | | | | | Any adverse event (AE) | 6 (85.7) | 13 (100.0) | 7 (100.0) | | | | Any severe AE | 2 (28.6) | 2 (15.4) | 1 (14.3) | | | | Any serious AE | 2 (28.6) | 4 (30.8) | 1 (14.3) | | | | AE leading to discontinuation | 1 (14.3) | 0 | 1 (14.3) | | | | Death | 1 (14.3) ^a | 0 | 1 (14.3) ^a | | | | Exposure | | | | | | | Median days of exposure, (range) | 736 (735–737) | 736 (19–747) | 421 (139–736) | | | ^aCauses of death were myocardial infarction and gastro-oesophageal cancer, respectively, and both were deemed not drug-related by investigators AE, adverse event; OLE, open-label extension; TTR, transthyretin ^{1.} Berk et al. *JAMA* 2013;310:2658–67; 2. Coelho et al. *Neurology* 2012;79:785–92; 3. EMA. Summary of product characteristics: Onpattro. 2018. Available from: https://www.ema.europa.eu/en/documents/product-information/onpattro-epar-product-information_en.pdf(accessed January 21, 2020); 4. Alnylam Pharmaceuticals. US prescribing information: ONPATTRO. 2019. Available from: http://www.alnylam.com/wp-content/uploads/2018/08/ONPATTRO-Prescribing-Information.pdf (accessed January 21, 2020) ## Patisiran Phase 2 OLE Pharmacodynamics ### **TTR Percent Change from Baseline Averaged over 24 Months** Median (range) serum TTR percent change from baseline averaged over 24 months was similar regardless of whether a patient received patisiran alone or with a concomitant TTR stabilizer #### TTR Percent Change from Baseline Averaged over 24 Months | | Patisiran | Patisiran and | Patisiran and | |--|------------------------|------------------------|------------------------| | | Alone | Tafamidis | Diflunisal | | | (n=7) | (n=13) | (n=7) | | Median TTR change (%) from baseline averaged over 24 months, (range) | -88.4 (-91.1 to -65.0) | -79.9 (-93.3 to -74.4) | -84.1 (-90.4 to -70.7) | ## Phase 3 APOLLO Study Overview and Prior Use of TTR Stabilizers - Randomized, placebo-controlled study of patisiran over 18 months¹ - Primary and key secondary endpoints were change in mNIS+7 and Norfolk QOL-DN, respectively, from baseline at 18 months² - Patients with prior tafamidis or diflunisal use were permitted to enroll and required to complete a wash-out period before starting study drug - Prior TTR stabilizer use (tafamidis or diflunisal) was a stratification factor at randomization¹ aStratification factors for randomization include: NIS <50 vs ≥50, early-onset V30M (<50 years of age at onset) vs all other mutations (including late-onset V30M), and previous TTR stabilizer use (tafamidis or diffunisal) vs no previous TTR stabilizer use. at bTo reduce likelihood of infusion-related reactions, patients receive the following premedication or equivalent ≥60 minutes before each study drug infusion: dexamethasone; oral acetaminophen/paracetamol; H2 blocker (e.g., ranitidine or famotidine); and H1 blocker (e.g., diphenhydramine). Evaluated change from baseline to 18 months for each endpoint ¹⁰⁻MWT, 10-meter walk test; COMPASS-31, Composite Autonomic Symptom Score: 31-item questionnaire; IV, intravenous; hATTR, hereditary transthyretin-mediated; mBMI, modified body mass index; mNIS+7, modified NIS+7; NIS, Neuropathy Impairment Score; NIS-W, NIS-W ### Patisiran Phase 3 APOLLO Baseline ### **Characteristics by Prior TTR Stabilizer Use Status** 119 (52.9%) patients received a TTR stabilizer prior to study drug treatment in APOLLO | | No Prior TTR Stabilizer Use | | Prior Tafamidis Use | | Prior Diflunisal Use | | |---|-----------------------------|---------------------|---------------------|---------------------|----------------------|---------------------| | Baseline Characteristics | Placebo
(n=36) | Patisiran
(n=70) | Placebo
(n=27) | Patisiran
(n=47) | Placebo
(n=14) | Patisiran
(n=31) | | Median age, years (range) | 62.5 (36–80) | 61 (24–77) | 63 (34–77) | 64 (27–83) | 66 (46–75) | 62 (35–75) | | Male, n (%) | 25 (69.4) | 51 (72.9) | 22 (81.5) | 33 (70.2) | 11 (78.6) | 25 (80.6) | | Median years since hATTR amyloidosis diagnosis, (range) | 0.7 (0.1–16.5) | 1.1 (0.0–21.0) | 2.1 (0.0–7.7) | 1.9 (0.2–17.5) | 2.9 (0.4–13.0) | 1.9 (0.0–11.9) | | Median months on prior TTR stabilizer, (range) | n/a | n/a | 13.8 (1.0–43.0) | 12.4 (1.3–108.0) | 10.6 (0.1–133.6) | 9.9 (0.5–85.9) | | V30M genotype, n (%) | 17 (47.2) | 25 (35.7) | 18 (66.7) | 22 (46.8) | 5 (35.7) | 9 (29.0) | | FAP stage, n (%) | | | | | | | | 1 | 17 (47.2) | 31 (44.3) | 15 (55.6) | 19 (40.4) | 5 (35.7) | 17 (54.8) | | 2 | 18 (50.0) | 39 (55.7) | 12 (44.4) | 28 (59.6) | 9 (64.3) | 14 (45.2) | | 3 | 1 (2.8) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | | Cardiac subpopulation ^a , n (%) | 19 (52.8) | 44 (62.9) | 9 (33.3) | 28 (59.6) | 8 (57.1) | 18 (58.1) | | Median baseline mNIS+7, (range) | 72 (11–154) | 81 (9–165) | 71 (17–132) | 87 (14–152) | 76 (17–137) | 66 (8–163) | | Median baseline Norfolk QOL-DN, (range) | 50 (14–111) | 68 (5–119) | 54 (17–91) | 62 (10–113) | 61 (8–83) | 49 (7–95) | ^aDefined as left ventricular wall thickness ≥13 mm, and no history of uncontrolled hypertension or aortic valve disease ### Patisiran Phase 3 APOLLO Efficacy ### Change in mNIS+7 and Norfolk QOL-DN from Baseline to 18 Months Mean change from baseline in mNIS+7 and Norfolk QOL-DN at 18 months trended consistently, regardless of prior TTR stabilizer use A mean improvement or stabilization was observed for patisiran-treated patients, whereas placebo-treated patients progressed on average #### mNIS+7 Change from Baseline to Month 18 100-— Median × Mean 80 Change in mNIS+7 60-Worse 40-20--20 **-40**· **-60**-No Prior Stabilizer **Prior Tafamidis Prior Diflunisal** Placebo Patisiran Placebo Patisiran Placebo Patisiran 62 45 31 ## Norfolk QOL-DN Change from Baseline to Month 18 80 Median Median Mean ## Patisiran Phase 3 APOLLO Safety ### **Safety Summary According to Prior TTR Stabilizer Use** Safety and tolerability were consistent regardless of any prior TTR stabilizer history and were comparable across the overall APOLLO population¹ | | No Prior TTR Stabilizer Use | | Prior Tafamidis Use | | Prior Diflunisal Use | | |--------------------------------|-----------------------------|----------------------|----------------------|----------------------|----------------------|---------------------| | Event, n (%) | Placebo
(n=36) | Patisiran
(n=70) | Placebo
(n=27) | Patisiran
(n=47) | Placebo
(n=14) | Patisiran
(n=31) | | Any AE | 35 (97.2) | 68 (97.1) | 26 (96.3) | 45 (95.7) | 14 (100.0) | 30 (96.8) | | Any severe AE | 14 (38.9) | 30 (42.9) | 8 (29.6) | 8 (17.0) | 6 (42.9) | 4 (12.9) | | Any serious AE | 14 (38.9) | 29 (41.4) | 12 (44.4) | 20 (42.6) | 5 (35.7) | 5 (16.1) | | AE leading to study withdrawal | 5 (13.9) | 6 (8.6) | 3 (11.1) | 1 (2.1) | 1 (7.1) | 0 | | Death | 4 (11.1) ^a | 5 (7.1) ^a | 2 (7.4) ^a | 2 (4.3) ^a | 0 | 0 | ^aDeemed not to be drug-related by investigators ### **Conclusions** - With the recent approvals of new therapies for hATTR amyloidosis, there is growing interest to understand the position of these therapies in the therapeutic landscape - Data from the Phase 2 OLE study suggested the safety of, and TTR reduction with, patisiran were unaffected by concomitant TTR stabilizer use - Data from APOLLO demonstrated that the efficacy and safety profiles of patisiran were unaffected by prior TTR stabilizer use - These data indicate that patients with hATTR amyloidosis with polyneuropathy benefit from patisiran treatment regardless of concomitant or prior use of a TTR stabilizer - Full data published as: Lin et al. Experience of patisiran with transthyretin stabilizers in patients with hereditary transthyretin-mediated amyloidosis. *Neurodegener Dis Manag.* 10 Jun 2020, doi.org/10.2217/nmt-2020-0020 Thank you to the patients, their families, investigators, study staff, and collaborators for their participation in the Phase 2 OLE and APOLLO studies