Open-Label Study of Patisiran in Patients with Hereditary Transthyretin-Mediated Amyloidosis with Polyneuropathy Post-Orthotopic Liver Transplant

Julian Gillmore¹, David Adams², Francisco Muñoz Beamud³, Teresa Coelho⁴, Laura Llado⁵, Jonas Wixner⁶, Anna Mazzeo⁷, Violaine Planté-Bordeneuve⁸, Erhan Berber⁹, Jing Jing Wang¹⁰, Xingyu Li¹⁰, Hartmut Schmidt¹¹

¹National Amyloidosis Centre, University College London, UK; ²National Reference Center for FAP (NNERF)/APHP/INSERM U 1195/CHU Bicêtre, France; ³Juan Ramón Jiménez Hospital, Huelva, Spain; ⁴Hospital de Santo António, Porto, Portugal; ⁵Hospital Universitari de Bellvitge, Barcelona, Spain; ⁶Department of Clinical And Experimental Medicine, University of Messina, Messina, Italy; ⁸University Hospital Henri Mondor, Créteil, France; ⁹MyoKardia, San Francisco, CA, USA;¹⁰Alnylam Pharmaceuticals, Cambridge, MA, USA; ¹¹University Hospital Münster, Münster, Germany

Introduction

Rationale for Patisiran Use in Patients with Hereditary ATTR **Amyloidosis and Disease Progression Post-OLT**

- Hereditary ATTR amyloidosis is a progressive, life-threatening disease caused by a mutation in the TTR gene^{1–5}; majority of patients develop a mixed phenotype of both polyneuropathy and cardiomyopathy^{6–9}
- OLT eliminates circulating mutant TTR, and has therefore been a treatment option used to slow disease progression in early-stage hereditary ATTR amyloidosis (**Figure 1**)^{10,11}
- In selected patients, OLT can improve survival^{10–13} but it is much less utilized with the introduction of other therapeutic options¹¹
- Disease progression (neurologic and cardiologic impairment) post-OLT has been reported^{14–17} from continued deposition of amyloid fibrils containing wt TTR in the nerves and heart^{5,10,15}
- Treatment options are currently limited for patients with disease progression post-OLT

Figure 1. Rationale for OLT

Remove liver with mutant TTR

Replace with healthy liver (wt TTR)

Patisiran: An RNAi Therapeutic

- Patisiran is approved in certain countries globally for the treatment of hereditary ATTR amyloidosis with polyneuropathy^{18–23}
- Approval is based on Phase 3 APOLLO study (NCT01960348), which showed that patisiran was able to halt or reverse polyneuropathy and improve QOL in the majority of patients⁸
- Patisiran is a lipid nanoparticle-delivered RNAi therapeutic that reduces serum TTR levels by inhibiting hepatic synthesis of the disease-causing mutant and wt TTR (Figure 2)^{24,25}

Figure 2. Patisiran Therapeutic Hypothesis

Objectives

• To describe the baseline demographics, 3-week reduction in serum TTR levels, and the interim safety results in enrolled patients with hereditary ATTR amyloidosis with polyneuropathy with disease progression post-OLT

Disclosure: Professor Gillmore reports participating in expert advisory boards for Alnylam, Akcea and Eidos; and is Co-Chair of the Steering Committee for the ATTRibute-CM (Eidos) trial. Abbreviations: AE, adverse event; ATTR, transthyretin-mediated; BMI, body mass index; COMPASS-31, Composite Autonomic Symptom Score 31-item questionnaire; FAP, familial amyloid polyneuropathy; IRR, infusion-related reaction; IV, intravenous; KPS, Karnofsky Performance Status; LFT, liver function test; mBMI, modified body mass index; NIS, Neuropathy Impairment Score; Norfolk QOL-DN, Norfolk QUality of Life-Diabetic Neuropathy questionnaire; FAP, familial amyloid polyneuropathy; IRR, infusion-related reaction; IV, intravenous; KPS, Karnofsky Performance Status; LFT, liver function test; mBMI, modified body mass index; NIS, Neuropathy Impairment Score; Norfolk QOL-DN, Norfolk QOL-DN, Norfolk QOL-DN, Norfolk QOL-DN, Norfolk QUality of Life-Diabetic Neuropathy questionnaire; FAP, familial amyloid polyneuropathy questionnaire; FAP, familial amyloid polyneuropathy; IRR, infusion-related reaction; IV, intravenous; KPS, Karnofsky Performance Status; LFT, liver function test; mBMI, modified body mass index; NIS, Neuropathy amyloid polyneuropathy; IRR, infusion-related; BMI, body mass index; NIS, Neuropathy; IRR, infusion-related; BMI, body mass ind NYHA, New York Heart Association; OLT, orthotopic liver transplantation; PK, pharmacokinetic; PND, polyneuropathy disability; q3w, every 3 weeks; QOL, quality of life; RNAi, RNA interference; R-ODS, Rasch-Built Overall Disability; q3w, every 3 weeks; QOL, quality of life; RNAi, RNA interference; R-ODS, Rasch-Built Overall Disability; q3w, every 3 weeks; QOL, quality of life; RNAi, RNA interference; R-ODS, Rasch-Built Overall Disability; q3w, every 3 weeks; QOL, quality of life; RNAi, RNA interference; R-ODS, Rasch-Built Overall Disability; q3w, every 3 weeks; QOL, quality of life; RNAi, RNA interference; R-ODS, Rasch-Built Overall Disability; q3w, every 3 weeks; QOL, quality of life; RNAi, RNA interference; R-ODS, Rasch-Built Overall Disability; q3w, every 3 weeks; QOL, quality of life; RNAi, RNA interference; R-ODS, Rasch-Built Overall Disability; q3w, every 3 weeks; QOL, quality of life; RNAi, RNA interference; R-ODS, Rasch-Built Overall Disability; q3w, every 3 weeks; QOL, quality of life; RNAi, RNA interference; R-ODS, Rasch-Built Overall Disability; q3w, every 3 weeks; QOL, quality of life; RNAi, RNA interference; R-ODS, Rasch-Built Overall Disability; q3w, every 3 weeks; QOL, quality of life; RNAi, RNA interference; R-ODS, Rasch-Built Overall Disability; q3w, every 3 weeks; QOL, quality of life; RNAi, RNA interference; R-ODS, Rasch-Built Overall Disability; q3w, every 3 weeks; QOL, quality of life; RNAi, RNA interference; R-ODS, Rasch-Built Overall Disability; q3w, every 3 weeks; QOL, quality of life; RNAi, RNA interference; R-ODS, Rasch-Built Overall Disability; q3w, every 3 weeks; QOL, quality of life; RNAi, RNA interference; R-ODS, Rasch-Built Overall Disability; q3w, every 3 weeks; QOL, quality of life; RNAi, RNA interference; R-ODS, Rasch-Built Overall Disability; q3w, every 3 weeks; QOL, quality of life; RNAi, RNA interference; R-ODS, Rasch-Built Overall Disability; q3w, every 3 weeks; QOL, quality of life; RNAi, RNA interference; R-ODS, Rasch-Built Overall Disability; q3w, every 3 weeks; QOL, quali Acknowledgments: Thank you to the patients, their families, investigators, study staff, and collaborators for their participation in the patisiran post-OLT study. Funding: This study was sponsored by Alnylam Pharmaceuticals. Editorial assistance was provided by Adelphi Communications and funded by Alnylam Pharmaceuticals. References: 1. Hanna. Curr Heart Fail Rep 2014;11:50-7; 2. Mohty et al. Arch Cardiovasc Dis 2013;34:520-8; 7. Coelho et al. N Engl J Med 2015;85:675-82; 4. Damy et al. N Engl J Med 2015;85:675-82; 4. Damy et al. J Cardiovasc Transl Res 2015;8:117-27; 5. Hawkins et al. N Engl J Med 2013;29:63-76; 8. Adams et al. N Engl J Med 2018;379:11-21; 9. Benson et al. N Engl J Med 2013;34:520-8; 7. Coelho et al. Orphanet J 2013;34:520-8; 7. Coelho et al. N Engl J Med 2015;85:675-82; 4. Damy et al. N Engl J Med 2015;85:675-82; 4. Damy et al. N Engl J Med 2013;34:520-8; 7. Coelho et al. Orphanet J 2013;29:63-76; 8. Adams et al. N Engl J Med 2018;379:11-21; 9. Benson et al. N Engl J Med 2013;34:520-8; 7. Coelho et al. Orphanet J 2013;29:63-76; 8. Adams et al. N Engl J Med 2015;85:675-82; 4. Damy et al. N Engl J Med 2015;85:675-82; 4. Damy et al. Orphanet J 2013;29:63-76; 8. Adams et al. N Engl J Med 2013;29:63-76; 8. Adams et al. N Engl J Med 2015;85:675-82; 4. Damy et al. N Engl J Med 2013;34:520-8; 7. Coelho et al. Orphanet J 2013;34:520-8; 7. Coelho et Rare Dis 2013;8:31; 11. Ericzon et al. Transplantation 2015;99:1847–54; 12. Adams et al. Curr Neurol Neurosci Rep 2014;14:435; 13. Adams. Ther Adv Neurol Disord 2013;6:129–39; 14. Adams et al. Curr Neurol Disord 2013;6:129–39; 14. Adams et al. Ist European Congress on Hereditary ATTR Amyloid 2007;14:277–82; 17. Olofosson et al. Transplantation 2002;73:745–51; 18. Alnylam Pharmaceuticals Inc. US prescribing at al. Curr Neurol Disord 2013;6:129–39; 14. Adams et al. Curr Neurol Disord 2013;6:129–39; 14. Adams et al. Curr Neurol Disord 2013;6:129–39; 14. Adams et al. Curr Neurol Neurosci Rep 2014;14:435; 13. Adams. Ther Adv Neurol Disord 2013;6:129–39; 14. Adams et al. Curr Neurol Disord 2013;6:129–39; 14. Adams et information: ONPATTRO (patisiran) lipid complex injection, for intravenous use. 2018. Available from: https://www.ema.europa.eu/documents/product-information/onpattro-epar-product-information en.pdf (accessed February 5, 2020); 19. European Medicines Agency. Summary of product characteristics: Onpattro 2 mg/mL concentrate for solution for infusion. 2018. Available from: https://www.ema.europa.eu/documents/product-information/onpattro-epar-product-information en.pdf (accessed information) en.pdf (accessed inform February 5, 2020); 20. Alnylam Pharmaceuticals Inc. Alnylam announces approval in Japan of ONPATTRO[®] for the treatment of hereditary ATTR amyloidosis with polyneuropathy. Alnylam 2019. Available from: https://www.cadth.ca/patisiran (accessed February 5, 2020); 21. Canadian Agency for Drugs and Technologies in Health. Available from: https://www.cadth.ca/patisiran (accessed February 5, 2020); 22. Swiss prescribing information. Abbreviated information for health care professionals for ONPATTRO 10mg/5ml, concentrate for solution for infusion (Version September 2019). Available from: https://investors.alnylam.com/press-release?id=24606 (accessed March 23, 2020); 23. Alnylam Announces Approval in Brazil of ONPATTRO[®] for the Treatment of Hereditary ATTR Amyloidosis with Polyneuropathy. Available from: https://investors.alnylam.com/press-release?id=24606 (accessed March 23, 2020); 23. Alnylam Announces Approval in Brazil of ONPATTRO[®] for the Treatment of Hereditary ATTR Amyloidosis with Polyneuropathy. Available from: https://investors.alnylam.com/press-release?id=24606 (accessed March 23, 2020); 24. Coelho et al. N Engl J Med 2013;369:819– 29; 25. Suhr et al. Orphanet J Rare Dis 2015;10:109.

Methods

Patisiran Post-OLT Study (NCT03862807) Design

• Phase 3b, open-label study conducted across several European countries (**Figure 3**)

Figure 3. Patisiran Post-OLT Study Design

Patient population (n=23)^a • Age ≥18 years Primary endpoint: Average TTR percent Received OLT for hereditary ATTR reduction across Month 6 amyloidosis ≥12 months before and Month 12 study start Worsening PND score after OLT^b Patisiran IV Secondary endpoints: fusion q3w, • KPS ≥70% Change at Month 12 in: 0.3 mg/kg NYHA class ≤II -NIS– Norfolk QOL-DN • No previous or current use of – R-ODS patisiran or inotersen, and will not - COMPASS-31 be using a TTR stabilizer during – mBMI the study No liver allograft rejection Safety (frequency of AEs) episodes^c \leq 6 months prior to study

^aCountries included: UK, Sweden, France, Germany, Italy, Portugal, Spain. ^bEither compared to pre-OLT assessment or between 2 assessments post-OLT. Including abnormal liver function tests suggestive of possible allograft rejection

Results

as height data missing at screening visit

Patisiran Post-OLT Baseline: Patient Baseline Demographics and Disease Characteristics (Tables 1 and 2)

• Patients received an OLT an average of 3.8 years after diagnosis • On average, patients received their first dose of patisiran >9 years after the OLT

Table 1. Baseline Demographics at Post-OLT Baseline

Baseline characteristics	Patients receiving patisiran (n=23)
Median age, years (range)	58.0 (43.0–76.0)
Male, n (%)	13 (56.5)
Country, n (%) Spain	7 (30.4)
France	5 (21.7)
Germany	3 (13.0)
Portugal	3 (13.0)
Italy	2 (8.7)
Sweden	2 (8.7)
UK	1 (4.3)
Mean age at hereditary ATTR amyloidosis diagnosis, years (SD)	46.7 (11.7)
V30M genotype ^a , n (%)	15 (65.2)
Mean age at liver transplant ^b , years (SD)	49.7 (10.9)
Mean time from hereditary ATTR amyloidosis diagnosis to OLT ^b , years (SD)	3.8 (3.1)
Mean time from OLT to first patisiran dose ^b , years (SD)	9.4 (5.2)
Mean BMI ^c , kg/m ² (SD)	23.4 (3.7)
Mean serum TTR level at baseline, mg/L (range)	202.1 (123.7–315.1)
Mean NIS, (range)	60.2 (7.0–136.5)
Other genotypes include: G47A, G47V, L12V, F64L, S77Y, and Y116S. $^{\mathrm{b}}$ n=22. $^{\mathrm{c}}$	n=21; data missing for 2 patients

Disea

- KPS, n 70-80 90-10 NYHA c No he
- PND sco
- 0: no :
- I: pre
- II: imp
- IIIA/B
- FAP stag

Patisiran Post-OLT Baseline: Shift from First Documented PND **Score to Baseline PND Score (Table 3)**

Table 3. Patisiran Post-OLT Baseline: Shift from First **Documented PND Score to Baseline PND Score**

First	Study baseline PND score, n (%) ^a						
documented PND score ^b	0	1	Ш	IIIA	IIIB	IV	Total
0	0	1 (4.3)	0	0	0	0	1 (4.3)
I	0	0	9 (39.1)	2 (8.7)	3 (13.0)	0	14 (60.9)
П	0	0	0	5 (21.7)	2 (8.7)	0	7 (30.4)
IIIA	0	0	0	0	1 (4.3)	0	1 (4.3)
IIIB	0	0	0	0	0	0	0
IV	0	0	0	0	0	0	0
Total	0	1 (4.3)	9 (39.1)	7 (30.4)	6 (26.1)	0	23 (100)
^a Percentages are based on total number of patients in the safety analysis set							

^oFirst documented PND score was either the most recent PND score prior to OLI, or first post-OLI PND score if no PND score prior to OLT

Patisiran Post-OLT: Serum TTR Levels

 After 3 weeks of patisiran treatment, there was a rapid reduction in serum TTR levels (Figure 4); the mean reduction from baseline in serum TTR levels was 81.9%

Table 2. Disease Characteristics at Post-OLT Baseline

se characteristic	Patients receiving patisiran (n=23)
(%)	
0	17 (73.9)
00	6 (26.1)
ass, n (%)	
eart failure	13 (56.5)
	5 (21.7)
	5 (21.7)
ore, n (%)	
symptoms	0
eserved walking, sensory disturbances	1 (4.3)
paired walking but can walk without stick/crutch	9 (39.1)
: walk with 1 or 2 sticks/crutches	13 (56.5)
ge, n (%)	
	0
	10 (43.5)
	13 (56.5)
	0

• At 3 months interim analysis (data as of December 5, 2019), patients had received patisiran for a mean (range) of 23.1 (3–32.7) weeks, with a total of 174 doses given

• The majority of patients (n=16, 70%) experienced a 1-unit increase in PND score (**Table 3**)

• Four (17%) patients experienced a 2-unit increase and 3 (13%) patients experienced a 3-unit increase from earliest historic PND score to study baseline

	10	1
	0	4
ge	-10	-
an %	-20	-
S, C	-30	-
€ (M)	-40	-
S C	-50	4
٦Ę	-60	4
in -	-70	4
Me	-80	4
	-90	4
-	100	<u> </u>

Mean (SD) TTR Level, mg/L

- **Patisiran Post**
- an AE
- The most common AEs were consistent with the Phase 3 APOLLO study⁸
- The most common treatment-related AE was IRR, seen in 4 (17.4%) patients
- LFTs were stable in majority of patients; mild abnormal LFTs (<2x ULN) observed in 5 (21.7%) patients and were likely due to normal fluctuation; no AEs of liver disorder were related to study drug
- Three patients experienced one SAE each (cholangitis, abnormal LFT, and IRR [IRR related to study drug]) Table 4. Interim Safety in the Post-OLT Study

Any AE	
--------	--

· · · · · · · · · · · · · · · · · · ·	
Patients with event, n (%)	Patients receiving patisiran post-OLT (n=23)
Any AE	21 (91.3)
AEs observed in ≥5% of patients	
Diarrhea	8 (34.8)
IRR	4 (17.4)
Peripheral edema	4 (17.4)
Back pain	4 (17.4)
UTI	3 (13.0)
Fatigue	3 (13.0)
Headache	2 (8.7)
Nausea	2 (8.7)
Oliguria	2 (8.7)
Vomiting	2 (8.7)
AE related to study drug	5 (21.7)
Any SAE	3 (13.0)
SAE related to study drug	1 (4.3)
AE leading to study drug interruption	8 (34.8)

Conclusions

- benefit:risk profile⁸
- ongoing study

Figure 4 the Post	Percentage Change t-OLT Study	in Serum TTR through	Week 3 in
10 - 0 -	n=23		
Mean (± SEM) Change in TTR Levels, % 06 - 09 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -		n=22	n=22
-100 -	Baseline	Weeks 1–2	Week 3
Mean (SD) TTR Level, mg/L	202.1 (54.1)	41.1 (19.4)	35.5 (21.1)
PatisiralAt the i	n Post-OLT: Safety Su nterim analysis, 21 (91.	mmary (Table 4) 3%) patients had experi	ienced

– Majority of AEs were mild or moderate

• Patisiran reduced serum TTR levels >80% at 3 weeks following the first dose of patisiran in patients with hereditary ATTR amyloidosis with disease progression post-OLT, indicating the potential benefit of patisiran treatment in this patient population • To date, the safety profile remained consistent with the Phase 3 APOLLO study and patisiran continues to show a positive

• The efficacy, safety, and PK of patisiran treatment in patients with disease progression post-OLT will be further investigated in this