

# Understanding the Burden of Primary Hyperoxaluria Type 1 (PH1): A Survey of Physician Experiences with PH1

David Danese<sup>1</sup>, Robert Murray<sup>1</sup>, Amy Monpara<sup>1</sup>, Rony Ben-David<sup>2</sup>, Tyler Crockett<sup>2</sup>, Melissa Holloway<sup>2</sup>, Pallavi Sastry<sup>2</sup>, Kimberly Barr<sup>2</sup>, Shannon Doyle<sup>2</sup>, Kenneth Howie<sup>2</sup> <sup>1</sup>Alnylam Pharmaceuticals, Cambridge, MA, USA; <sup>2</sup>Magnolia Innovation, Hoboken, NJ, USA

#### Background and Objective:

#### **Objective:**

To better characterize PH1 natural history in terms of clinical manifestations, interventions, and resource use events that contribute to disease burden throughout the patient journey

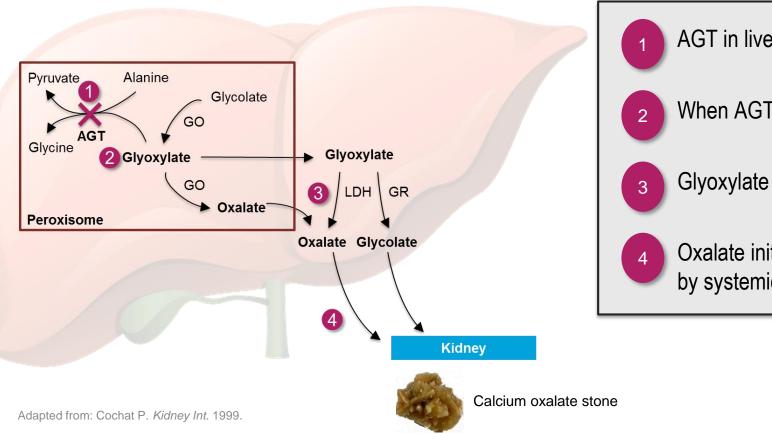
# **Primary Hyperoxaluria Type 1 (PH1):**

#### Background<sup>1</sup>:

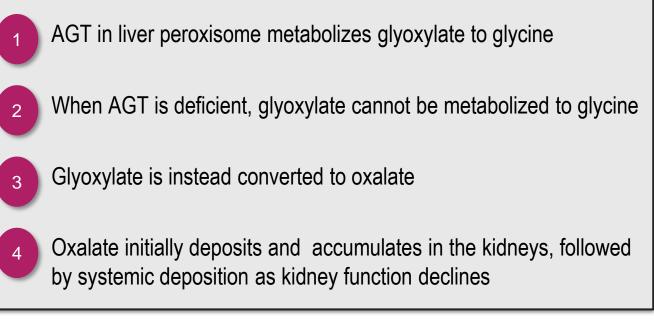
- Prevalence of PH1: 1-3/1,000,000 in Europe<sup>1</sup> and ~ 32/1,000,000 in Middle East<sup>2</sup>
- Due to defect in liver peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT)
- Disease course ultimately leads to multi-organ damage from systemic oxalosis
- Phenotype varies significantly across patients; may present at any age, but typically in children

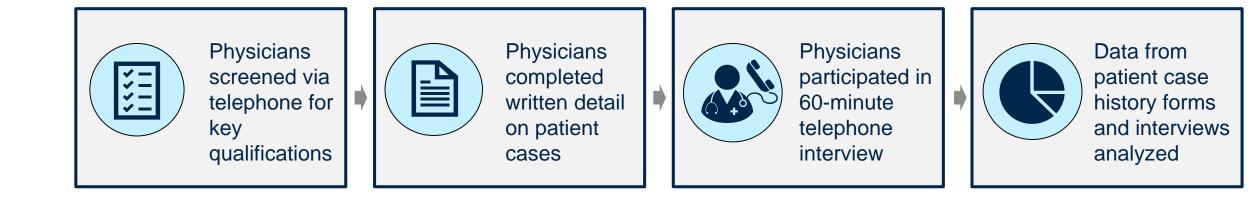
### **Clinical Presentation**

- Overproduction of oxalate results in formation of insoluble calcium oxalate crystals leading to urolithiasis, nephrocalcinosis, and kidney failure; declining ability to renally clear oxalate also leads to systemic oxalosis
- Wide spectrum of clinical manifestations and potentially frequent need for medical intervention
- Detailed natural history data on PH1 manifestations and required interventions / resource use is limited


# No therapies are approved for treatment of PH1

# Methods


# **Physician Research Interviews**

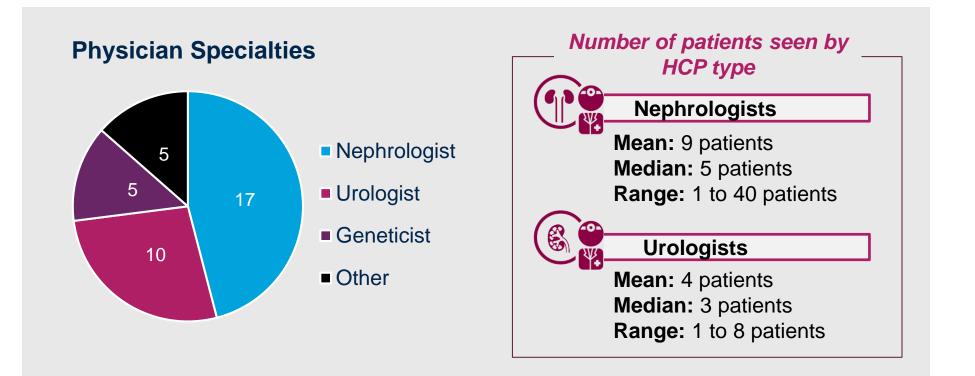

#### A series of case-based physician interviews

- Key inclusion criteria: physicians in practice for >2 years; active role in diagnosing, treating, or managing  $\geq 1$ PH1 patients within last 5 years; spend ≥50% of time in direct patient care; see 100+ total patients per year; able to review PH1 patient medical records
- Case history forms served as basis for further probing of details in 60-minute interviews conducted with ٠ open-ended questions from a semi-structured interview guide



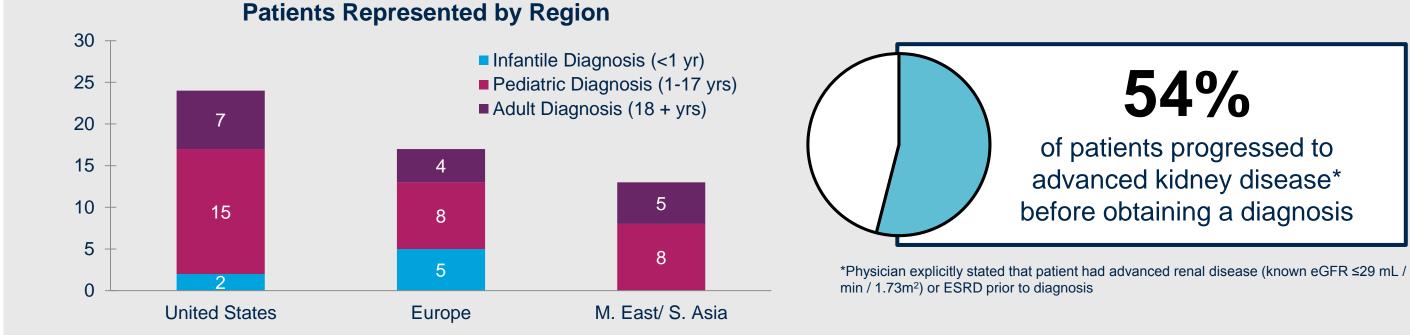
**Oxalate Synthesis in PH1:** 





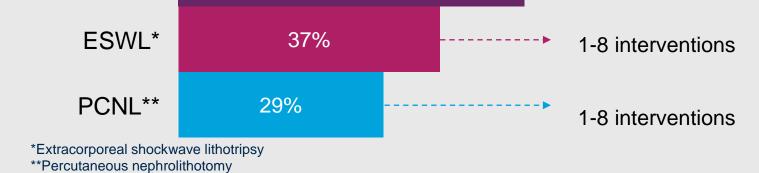

#### Results

# **Physician and Patient Characteristics**


#### **Physician Characteristics**

- 37 physician interviews were conducted between November 2018 and March 2019
- Physicians were from the United States (N=17), Europe (N=13), and Middle East / South Asia (N=7)




### **Patient Characteristics**

- A combined total of 54 patient cases were reported by the physicians interviewed
- Age at diagnosis ranged from 1 month 48 years (median 7.5 years)
  - By the time of interviews, patients were a median of 9.5 years (range: 0.5 25 years) post-diagnosis



# **Burden of Disease Throughout the Patient Journey**

| burden of Disease in                                          | noughout t          |                                                                                        |                                                                          |        |                                                                                                   |                                                                                                                                                           |                      |                                            |
|---------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------|
|                                                               |                     | Stone Burden                                                                           |                                                                          |        |                                                                                                   | Treatment Burden                                                                                                                                          |                      |                                            |
| of patie                                                      | nts 6               | 2.7 stone events                                                                       | Average of 5 years                                                       |        | of patients required                                                                              | Treatments Non-ESRD Patients* Received During Their Journey                                                                                               |                      |                                            |
| 76% had sto                                                   |                     | (lifetime average, among<br>those who had at least 1                                   | under urology care<br>pre-diagnosis                                      |        | 48% dialysis at some point<br>in the disease course                                               | Hyperhydration                                                                                                                                            | 95%                  |                                            |
| <ul> <li>Those who did not h</li> </ul>                       | nave stones         | <ul> <li>stone event)</li> <li>Stones caused high levels of pain,</li> </ul>           | Urological care addressed                                                | •      | <ul> <li>Progression to advanced kidney</li> </ul>                                                | Pyridoxine (B6)                                                                                                                                           | 82%                  | <pre>of patients were completely B6 </pre> |
| mainly presented with highly diminished renal function, signs |                     | especially when obstructive, and often required acute removal                          | immediate concern for stones,<br>but often delayed metabolic             | 1      |                                                                                                   | Potassium citrate                                                                                                                                         | 79%                  | unresponsi                                 |
| of nephrolcalcinosis<br>thrive (FTT)                          | -                   | Obstructive ureteral stones can<br>cause acute kidney injury or acute<br>renal failure | workup and ultimately PH1                                                |        | awaiting eventual transplant<br>*Defined as patients who were not at ESRD at initial presentation | <ul> <li>Hyperhydration often proved difficult for patients, especially for<br/>children tasked with drinking multiple liters of water per day</li> </ul> |                      |                                            |
|                                                               | Intervention Burden |                                                                                        |                                                                          |        |                                                                                                   | Hospitalization Burden                                                                                                                                    |                      |                                            |
| Percentage o                                                  | of Patients Ev      | er Requiring                                                                           | Patient                                                                  | Burder | n                                                                                                 | Among patients w                                                                                                                                          | ho were <b>hospi</b> | talized:                                   |
| Stone Interver                                                |                     |                                                                                        | <ul> <li>Invasive stone-removal<br/>procedures (ureteroscopy,</li> </ul> |        | of patients were                                                                                  | 3.6 hospitalizations                                                                                                                                      | s (                  | 12.8 hospital days                         |
| Ureteroscopy                                                  | 49%                 | > 1-9 interventions                                                                    | PCNL) posed a great burden to patients, including potential              | 65     | 5% ever nospitalized i se i                                                                       | (lifetime average)                                                                                                                                        |                      | (lifetime average)                         |



patients, including potential adverse effects such as bleeding, scarring, infections, and internal organ damage, as well as days in inpatient care

- Many patients incurred financial and physical burden, as well as lost time at work (for adults or caregivers) or school (for children) as a result of hospitalization
- Younger patients were often hospitalized for symptoms such as renal colic, UTI, or vomiting
- Older patients were often hospitalized for acute pain from ureteral stones or pyelonephritis
- Over multiple hospital visits, patients spent almost two weeks total in the hospital (range: 1-60 days)
- Hospital stay for stones could be extended due to recovery time for stone-removal procedures

#### **Burden of Advanced Disease<sup>†</sup>** of stone patients of PH1 patients of stone patients 48% of patients required dialysis 34% of patients required organ had **multiple** without ESRD 78% required 40% treatment at some point in their transplant at some point in their **59%** stone events intervention for hospitalized for journey journey symptoms their stones **Dialysis Regimen** Transplant Type, 0 among Transplant Recipients 5% Kidney 27% had 4+ stone events Average # # of times 3 5 6 Average # 4 only **6%** of PH1 per week: 5% Kidney after patients on the Average time between stone Ureteroscopy 1.9 **Hospitalizations** 2.4 Liver transplant list events (among patients who had recurrent stones) 26% Days spent in Liver Only Dialysis 54% 4% 35% 8% 7.7 **ESWL** 2.7 1-5 yrs. 5+ yrs. <1 yr. hospital **Patients Dual Liver-**63% 8% 38% 54% Range of days Kidney PCNL 1-28 1.4 spent in hospital • 1 patient received a kidney transplant before diagnosis, which ultimately failed due to oxalate overload (known eGFR ≤29 mL / min / 1.73m<sup>2</sup>) <sup>t</sup>(known eGFR ≤29 mL / min / 1.73m²)

# **Discussion & Summary**

- PH1 manifestations were burdensome even prior to advanced renal compromise, as demonstrated by the occurrence of substantial numbers of kidney stone events (often recurrent, and often requiring surgery) and hospitalizations
  - Most patients underwent at least one PCNL or ureteroscopy procedure as a result of stones associated with PH1 these are invasive procedures which can result in bleeding, infection<sup>4</sup> and internal injury<sup>5</sup>
  - Many patients underwent an ESWL procedure as a result of stones associated with PH1: this non-invasive procedure may be less effective for patients with PH1 due to the potential resistance of calcium oxalate monohydrate stones,<sup>6</sup> and concerns exist about the risk of renal injury in patients undergoing multiple ESWL procedures – particularly children and individuals with existing kidney damage<sup>7</sup>
- This progressive disease commonly leads to ESRD if left untreated, further increasing disease burden as patients require intensive dialysis and eventual solid organ transplant (mainly dual kidney/liver)
  - Nearly half of patients ultimately required dialysis, which carries a significant financial and emotional burden given the intensive nature of treatment and time required (usually around 4 hours); this is particularly true in PH1, where a number of patients require dialysis up to 6 times per week (vs. the standard 3 times per week schedule in non-PH1-related ESRD)
  - Over a third of patients required a solid organ transplant, carrying a significant mortality risk; transplant also subjects patients to a life-long immunosuppressive regimen which increases patient morbidity (e.g., infection, malignancy) and mortality over time

# **Burden Prior to Advanced Disease<sup>†</sup>**



1. Cochat P et al. N Engl J Med. 2013;369:649-658 2. Abumwais JQ. Saudi J Kidney Dis Transpl. 2012;23:158-161 3. Danese, D., Murray, R., Monpara, A., Ben-David, R., Crockett, T, Holloway, M.R., Barr, K., Doyle, S., Howie, K. (2019) The Importance of Evaluating for Potential Underlying Causes of Kidney Dis Transplant Association (ERA-EDTA) Congress; 2019 Jun 13-16; Budapest, Hungary. 4. Taylor E et al. Primary Hyperoxaluria Type 1. 2002 Jun 19 [Updated 2017 Nov 30]. In: Adam MP, Ardinger HH, Pagon RA, et al. Primary Hyperoxaluria Type 1. 2002 Jun 19 [Updated 2017 Nov 30]. In: Adam MP, Ardinger HH, Pagon RA, et al. Primary Hyperoxaluria Type 1. 2002 Jun 19 [Updated 2017 Nov 30]. In: Adam MP, Ardinger HH, Pagon RA, et al. Primary Hyperoxaluria Type 1. 2002 Jun 19 [Updated 2017 Nov 30]. In: Adam MP, Ardinger HH, Pagon RA, et al. Primary Hyperoxaluria Type 1. 2002 Jun 19 [Updated 2017 Nov 30]. In: Adam MP, Ardinger HH, Pagon RA, et al. Primary Hyperoxaluria Type 1. 2002 Jun 19 [Updated 2017 Nov 30]. In: Adam MP, Ardinger HH, Pagon RA, et al. Primary Hyperoxaluria Type 1. 2002 Jun 19 [Updated 2017 Nov 30]. In: Adam MP, Ardinger HH, Pagon RA, et al. Primary Hyperoxaluria Type 1. 2002 Jun 19 [Updated 2017 Nov 30]. In: Adam MP, Ardinger HH, Pagon RA, et al. Primary Hyperoxaluria Type 1. 2002 Jun 19 [Updated 2017 Nov 30]. In: Adam MP, Ardinger HH, Pagon RA, et al. Primary Hyperoxaluria Type 1. 2002 Jun 19 [Updated 2017 Nov 30]. In: Adam MP, Ardinger HH, Pagon RA, et al. Primary Hyperoxaluria Type 1. 2002 Jun 19 [Updated 2017 Nov 30]. In: Adam MP, Ardinger HH, Pagon RA, et al. Primary Hyperoxaluria Type 1. 2002 Jun 19 [Updated 2017 Nov 30]. In: Adam MP, Ardinger HH, Pagon RA, et al. Primary Hyperoxaluria Type 1. 2002 Jun 19 [Updated 2017 Nov 30]. In: Adam MP, Ardinger HH, Pagon RA, et al. Primary Hyperoxaluria Type 1. 2002 Jun 19 [Updated 2017 Nov 30]. In: Adam MP, Ardinger HH, Pagon RA, et al. Primary Hyperoxaluria Type 1. 2002 Jun 19 [Updated 2017 Nov 30]. In: Adam MP, Ardinger HH, Pagon RA, et al. Primary Hyperoxaluria Type 1. 2002 Jun 19 [Updated 2017 Nov 30]. In: Adam MP, Ardinger HH, Pagon RA, et al. Primary Hyperoxaluria Type 1. 2002 Jun 19 [Updated 2017 Nov 30]. In: Adam MP, Ardinger HH, Pagon RA, et al. Primary Hyperoxaluria Type 1. 2002 Jun 19 [Updated 2017 Nov 30]. In: Adam MP, Ardinger HH, Pagon RA, et al. Primary Hyperoxaluria Type 1. 2002 Jun Kidney Dis. 2001;37:233-243.