Phase 1/2 and Open Label Extension Studies of Givosiran, an Investigational RNA Interference (RNAi) Therapeutic, in Patients with Acute Intermittent Porphyria

Karl Anderson | MD |University of Texas Medical Branch, Galveston, TX | D. Montgomery Bissell, | MD | University of California, San Francisco, CA |Herbert Bonkovsky, | MD | Wake Forest University, Winston-Salem, NC | Eliane Sardh | MD, PhD | Karolinska University Hospital, Karolinska Institute; Porphyria Centre Sweden, Stockholm, Sweden | Pauline Harper | MD, PhD | Karolinska University Hospital, Karolinska Institute; Porphyria Centre Sweden, Stockholm, Sweden | Manisha Balwani, | MD | Icahn School of Medicine at Mount Sinai, New York, NY | Penelope Stein, | MD, PhD | King's College Hospital, London, United Kingdom | David Rees, | MD | King's College Hospital, London, United Kingdom | Joseph Bloomer, | MD | University of Alabama, Birmingham, AL |Charles Parker, | MD | University of Utah, Salt Lake City, UT |John Phillips, | PhD | University of Utah, Salt Lake City, UT |Nabil Al-Tawil | MD, PhD | Karolinska University Hospital, Karolinska Institute Craig Penz, | MA | Alnylam Pharmaceuticals, Cambridge, MA | Amy Chan, | PhD | Alnylam Pharmaceuticals, Cambridge, MA | Amy Simon, | MD | Alnylam Pharmaceuticals, Cambridge, MA

Disease Overview

Acute Hepatic Porphyrias (AHPs)^{1,2}

- Family of rare, genetic diseases due to a deficiency in one of the enzymes in heme biosynthesis
- Acute Intermittent Porphyria (AIP) most common, with a mutation in hydroxymethylbilane synthase (HMBS)

Disease Pathophysiology

- Induction of ALAS1 leads to accumulation of neurotoxic heme intermediates ALA/PBG
- ALA believed to be primary neurotoxic intermediate that causes disease manifestations

Attacks and Chronic Manifestations

- Autonomic Nervous System (severe abdominal pain, hypertension)
- Central Nervous System (mental status changes, seizures)
- Peripheral Nervous System (muscle weakness, paralysis)

Treatment and Unmet Need

- · Glucose and hemin used to treat acute attacks and by some specialists to prevent attacks
- · Unmet need for therapies to prevent attacks and improve chronic disease manifestations

Therapeutic Hypothesis for Givosiran, an Investigational RNAi Therapeutic for AHPs

Reduction of Liver ALAS1 Protein to Lower ALA and PBG

Phase 1 and Open-Label Extension (OLE) Study Design

Parts A & B in Chronic High Excreter (CHE) Patients[†]

- Randomized 3:1 (givosiran:placebo), single blind design
- Genetic confirmation of AIP
- Urine PBG level >4 mmol/mol Cr
- No attacks within 6 months of study drug

Part C and OLE in Recurrent Attack Patients

- Randomized 3:1 (givosiran:placebo), double-blind design
- Genetic confirmation of AIP
- Observational run-in (3 month) without scheduled
 hemin
- ≥2 attacks in past 6 months OR on prior hemin prophylaxis. One attack in run-in required for randomization
- Patients completing Part C eligible to enroll in OLE

Part C (6 months)			OLE (up to 42 months) [‡]	
2.5 mg/kg q3M x 2, N=4		5.0	5.0 mg/kg q3M $ ightarrow$ 2.5 mg/kg qM, N=4	
5.0 mg/kg q3M x 2, N=5			2.5 mg/kg qM, N=5	
	2.5 mg/kg qM x 4, N=4		2.5 mg/kg qM, N=4	
	5.0 mg/kg qM x 4, N	 =4	5.0 mg/kg qM \rightarrow 2.5 mg/kg qM, N=3	

Clinicaltrials.gov: NCT02452372. AIP, Acute Intermittent Porphyria. PBG; Porphobilinogen. Cr; Creatinine. qM; Monthly. q3M; Quarterly. [†]2 patients participated twice in Part A and 3 patients participated in both Part A and Part B

¹All patients in OLE transitioned to 2.5 mg/kg qM; Safety Review Committee authorization before all dose escalations

Demographics and Baseline Characteristics

Phase 1 Study Results

	Parts A & B	Pai	rt C
	(N=23†)	Placebo (N=4)	Givosiran (N=13)
Age, years, median (range)	47 (30–64)	42 (27–60)	36 (21–59)
Female, n (%)	18 (78)	2 (50)	13 (100)
Weight, kg, mean (SD)	75.9 (15.9)	91.4 (20.8)	70.9 (14.5)
Race, n (%)			
White/Caucasian	22 (96)	4 (100)	10 (77)
Asian	1 (4)	0 (0)	1 (8)
Black/African American	0 (0)	0 (0)	2 (15)
Prior porphyria therapy, n (%)			
Hemin prophylaxis		2 (50)	6 (46)
GnRH analogue use	NA	0 (0)	4 (31)
Chronic opioid use		2 (50)	7 (54)
Porphyria attacks in past 12 months, median (range)	NA	10.0 (5–50)	9.0 (0–36)
ALA, mmol/mol Cr, mean (SEM) [‡]	10.3 (1.5)	18.7 (5.5)	17.5 (4.0)
PBG, mmol/mol Cr, mean (SEM) [‡]	23.8 (3.6)	43.8 (4.6)	48.1 (7.1)
ALAS1 mRNA, fold relative to normal, mean (SEM) ¹	2.4 (0.2)	2.8 (0.3)	3.7 (0.3)

[†]2 patients participated twice in Part A and 3 patients participated in both Part A and Part B

*Upper Limit of Normal: ALA=1.5 mmol/mol Cr; PBG=0.14 mmol/mol Cr determined based on samples collected from 150 normal healthy subjects analyzed by LC-MS/MS

SD; Standard deviation. GnRH; Gonadotropin-releasing hormone. Cr; Creatinine. ALA; δ-Aminolevulinic acid. PBG; Porphobilinogen. SEM; Standard error of mean. ALAS1; ALA synthase 1

1. Chan, et al., Molecular Therapy-Nucleic Acids. 2015;4:e263

Summary of Phase 1 Study Results*

Clinical Activity and Safety

Clinical Activity in Recurrent Attack Patients (Part C)

Monthly dosing resulted in:

- Approximately 60-70% reduction of induced ALAS1 mRNA
- Robust and sustained lowering of ALA and PBG of >80%
- Mean reductions in AAR up to 83% and annualized hemin use up to 88% relative to placebo

Safety

- 6 patients had SAEs, with none assessed as related to study drug
 - Part A: 2 patients (0.035 and 0.10 mg/kg) had abdominal pain requiring hospitalization
 - Part B: 1 patient (1 mg/kg) had miscarriage 7 weeks postconception and 90 days post-dose
 - Part C: 3 patients
 - $\,\circ\,$ 1 patient (2.5 mg/kg qM) had opioid bowel dysfunction
 - $\,\circ\,$ 1 patient (5 mg/kg q3M) had influenza infection
 - 1 patient (5 mg/kg qM) had bacteremia from portacath, associated with auditory hallucinations. Patient subsequently had fatal hemorrhagic pancreatitis, assessed as unlikely related to study drug due to presence of gallbladder sludge (previously reported)
- No other discontinuations due to AEs or other clinically significant changes in EKG, clinical laboratory or physical examination
- Review of AEs reveals no clear relationship to dose

Phase 1/2 Open Label Extension (OLE) Study Patient Overview

- All eligible patients from Phase 1 Part C enrolled into OLE
- Mean time in OLE of 13.6 months (median 14.3 months)
- Max time in OLE of 19 months, with max of 25 months of total treatment in Phase 1 and OLE

Safety and Tolerability

Interim Phase 1/2 OLE Study Results

- 100% (16/16) patients reported at least 1 AE
- 4 patients with 5 SAEs
 - 1 patient with upper extremity DVT, unlikely related to study drug due to prior indwelling central venous catheter and venous damage from chronic hemin usage*
 - 1 patient with anaphylactic reaction, assessed as definitely related to study drug*:
 - Occurred after third dose of givosiran (first dose in OLE at 2.5 mg/kg); patient previously received two doses (5 mg/kg q3M) in Phase 1 study
 - Past history of asthma and atopy
 - Event resolved with medical management, and patient permanently discontinued from study
 - 1 patient had two events: two episodes of pyrexia related to suspected PaC infection and chlamydia bronchitis; all events assessed as unlikely related
 - 1 patient with change in mental status due to possible glucocorticoid toxicity for an acute bacterial sinusitis, assessed as unlikely related
- AEs in >3 patients: abdominal pain, fatigue, injection site erythema, nausea, myalgia, diarrhea, headache, and nasopharyngitis
- 6 patients had injection site reactions, most commonly erythema and all mild to moderate
- No clinically significant increases in LFTs or lipase with ongoing dosing

Consistent and Durable Lowering of Induced ALAS1 mRNA Levels With Long-term Givosiran Dosing

Interim Phase 1/2 OLE Study Results

 Monthly dosing at 2.5 mg/kg led to robust and sustained lowering of ALAS1 mRNA, with a reduction from baseline of 61% at Month 12

Consistent and Durable Lowering of ALA Toward Normal Levels With Long-term Givosiran Dosing

Interim Phase 1/2 OLE Study Results

- Monthly dosing at 2.5 mg/kg led to robust and sustained lowering of ALA toward normal levels, with a reduction from baseline of 87% at Month 12
- Similar reductions were seen with PBG, with a reduction from baseline of 83% at Month 12 (data not shown)

¹Upper Limit of Normal (ULN): ALA=1.5 mmol/mol Cr

[‡]The different Ns at each month reflect differences in (1) when patients transitioned to 2.5 mg/kg dose on study, and (2) the duration of patients on study. The N=15 at 0 month reflects a missing data point at pre-study baseline.

Clinical Activity Maintained or Enhanced in Givosiran Treated Patients with Extended Dosing in OLE Study

Phase 1 and Interim OLE Study Results in Recurrent Attack Patients

- Mean reductions in AAR of 93% and annualized hemin use of 94% observed in OLE relative to Phase 1 Run-in
- 5/12 (42%) patients with AAR = 0, for a mean of 7.4 months

Data as of 7Jun2018. OLE: Open-label extension. AAR: Annualized attack rate [†]Attacks requiring hospitalization, urgent health care visit, or IV hemin at home. *Aggregated across all dose groups. Mean time in Phase 1 Run-in and Treatment of 103 days and 165 days, respectively; mean time in OLE of 415 days.

Clinical Activity Demonstrated in Placebo Patients Crossing Over to Givosiran Treatment in OLE

Phase 1 and Interim OLE Study Results in Recurrent Attack Patients

- Upon crossing over to givosiran in OLE, prior Phase 1 placebo patients had a 95% mean reduction in AAR and 98% mean reduction in annualized hemin use relative to both Phase 1 Run-in and Treatment periods
- 2/4 (50%) patients with zero attacks, for a mean of 14.6 months

Data as of 7Jun2018. OLE: Open-label extension. AAR: Annualized attack rate [†]Attacks requiring hospitalization, urgent health care visit, or IV hemin at home. Mean time in Phase 1 Run-in and Treatment of 77 days and 175 days, respectively; mean time in OLE of 416 days

Clinical Activity in Recurrent Attack Patients

Phase 1 and Interim OLE Study Results in Recurrent Attack Patients

Data as of 7Jun2018. OLE: Open-label extension Note: Duration between Phase 1 and OLE studies is not shown [†]Attacks requiring hospitalization, urgent health care visit, or IV hemin at home.

ALA Lowering is Associated with Reductions in AAR

Phase 1 and Phase 1/2 OLE Study Results in Recurrent Attack Patients

Graded relationship between AAR and ALA lowering

Data as of 7Jun2018. OLE: Open-label extension. AAR: Annualized attack rate ALA; δ-Aminolevulinic acid. SEM; Standard error of mean. AAR; Annualized attack rate. [†]Attacks requiring hospitalization, urgent health care visit, or IV hemin at home

- In Phase 1 study, givosiran treatment lowered induced ALAS1, with corresponding reductions in both elevated ALA and PBG, and reduced attacks and hemin use in recurrent attack patients
- Dose regimen of 2.5 mg/kg qM was selected for Phase 1/2 OLE and further clinical development
- Increasing patient experience, with mean time in Phase 1/2 OLE of 13.6 months and up to 25 months
 of total treatment in Phase 1 and Phase 1/2 OLE
- Interim Phase 1/2 OLE study results demonstrated:
 - Maintenance, and potentially enhancement, of clinical activity with continuous monthly dosing at 2.5 mg/kg
 - Consistent and durable ALA and PBG lowering of >80% at Month 12
 - $^\circ$ Reductions in AAR and hemin use of $\,>\!90\%$
 - Safety profile supportive of continued clinical development
- Graded relationship observed between ALA lowering and AAR in Phase 1 and Phase 1/2 OLE, supporting therapeutic hypothesis and ALA as a biomarker reasonably likely to predict clinical benefit

Planned Next Steps

- ENVISION Phase 3 study in patients with AHP is ongoing; enrollment completed with 94 patients, 36 sites, 18 countries
- Topline results from complete ENVISION study in early 2019
- Initiation of rolling NDA submission in 2018 with addition of full clinical results in mid-2019; MAA submission in mid-2019

Acknowledgements

Thank you to the patients, investigators, and study staff who participated in these studies

Investigators	Institution	Location
Eliane Sardh Pauline Harper Daphne Vassiliou	Karolinska University Hospital	Stockholm, SE
David Rees Penelope Stein	King's College Hospital	London, UK
Manisha Balwani	Mt. Sinai Icahn School of Medicine	New York, NY
Karl Anderson	University of Texas Medical Branch	Galveston, TX
Joseph Bloomer Ashwani Singal	University of Alabama, Birmingham	Birmingham, AL
Montgomery Bissell Bruce Wang	University of California, San Francisco	San Francisco, CA

